These clinical practice guidelines (CPG) are meant to be guides for clinical practice, based on the best available evidence at the time of development. Adherence to these guidelines may not necessarily guarantee the best outcome in every case. Every health care provider is responsible for the management of his/her unique patient based on the clinical picture presented by the patient and the management options available locally.

These guidelines were issued in 2009 and will be reviewed in 2013 or sooner if new evidence becomes available.

CPG Secretariat
Health Technology Assessment Section
Medical Development Division
Ministry of Health Malaysia
4th Floor, Block E1, Parcel E
62590 Putrajaya

Electronic version available on the following website:
http://www.moh.gov.my
http://www.acadmed.org.my
GUIDELINES DEVELOPMENT

The development group for these guidelines consisted of paediatricians, paediatric haemato-oncologists, paediatric endocrinologists, haematologists, pathologists, public health physicians, a clinical geneticist, a family medicine specialist, a radiologist, a pharmacist and a nursing sister from the Ministry of Health and Ministry of Higher Education, Malaysia.

Literature search was carried out at the following electronic databases: International Health Technology Assessment website, PUBMED/MEDLINE, Cochrane Database of Systemic Reviews (CDSR), Journal full text via OVID search engine, Database of Abstracts of Reviews of Effectiveness, Cochrane Controlled Trials Registered, Science Direct and CINAHL (Refer to Appendix I for search terms). In addition, the reference lists of studies selected for inclusion were scanned for relevant studies. Experts in this field were also contacted to identify further studies.

The clinical questions were divided into 14 major subgroups and members of the development group were assigned individual topics within these subgroups. All literature retrieved were appraised by at least two members using Critical Appraisal Skills Programme (CASP) checklists, presented in the form of evidence tables and discussed during group meetings. All statements and recommendations formulated were agreed by both the development group and the review committee. Where the evidence was insufficient, the recommendations were derived by consensus of the development group and review committee.

The articles were graded using the US/Canadian Preventive Services Task Force Level of Evidence (2001), while the grading of recommendations in these guidelines was modified from the Scottish Intercollegiate Guidelines Network (SIGN).

The draft of these guidelines was posted on both the Ministry of Health Malaysia and Academy of Medicine, Malaysia websites for comment and feedback. These guidelines had also been presented to the Technical Advisory Committee for Clinical Practice Guidelines, and the Health Technology Assessment and Clinical Practice Guidelines Council, Ministry of Health Malaysia for review and approval.
OBJECTIVES

GENERAL OBJECTIVES

To provide evidence-based guidance in the management of transfusion dependent thalassaemia in paediatric and adult patients

SPECIFIC OBJECTIVES

* To provide guidance in diagnosing thalassaemia
* To provide guidance in counselling and cascade screening
* To provide guidance in blood transfusion for thalassaemia patients
* To provide guidance in iron chelation therapy
* To provide guidance in managing important complications in transfusion dependent thalassaemia

It is not the objective of these guidelines to cover:

* Management of thalassaemia patients who do not require regular blood transfusion
* Prenatal and intrauterine management
* Management of thalassaemia patients during pregnancy
* Population screening

TARGET POPULATION

Adult and paediatric transfusion dependent thalassaemia patients
INCLUSION AND EXCLUSION CRITERIA

a) Inclusion Criteria
Paediatric and adult transfusion dependent thalassaemia patients

Definition
- Transfusion dependent thalassaemia patients are those who require life-long regular blood transfusions

b) Exclusion Criteria
Thalassaemia patients who do not require regular blood transfusion

CLINICAL QUESTIONS
Refer to Appendix 2

TARGET GROUP/USER

All health care professionals/individuals who are involved in the management of transfusion dependent thalassaemia patients including:-

* Paediatrician
* Physician
* Haematologist
* Pathologist
* Radiologist
* Family Medicine Specialist
* Public Health Physician
* Medical Officer
* General Practitioner
* Pharmacist
* Dietitian/Nutritionist
* Nurse/Assistant Medical Officer
* Laboratory Personnel
* Medical Social Worker

Patients and their families/caregiver
HEALTH CARE SETTINGS

Outpatient, inpatient and community setting

PROPOSED CLINICAL INDICATORS FOR QUALITY MANAGEMENT

Primary Indicator

<table>
<thead>
<tr>
<th>INDICATORS</th>
<th>FORMULA</th>
</tr>
</thead>
</table>
| Percentage of leucoreduced Packed Red Blood Cell (PRBC) units issued to transfusion dependent thalassaemia patients | \[
\text{Number of leucoreduced PRBC unit issued to transfusion dependent thalassaemia patients} \times 100
\]
| Percentage of transfusion dependent thalassaemia patients with serum ferritin above 1000 μg/L receiving iron chelation therapy | \[
\frac{\text{Number of transfusion dependent thalassaemia patients with serum ferritin level above 1000 μg/L receiving iron chelation therapy}}{\text{Total number of transfusion dependent thalassaemia patients}} \times 100
\]
| Percentage of transfusion dependent thalassaemia patients with mean annual serum ferritin below 2500 μg/L | \[
\frac{\text{Number of patients with mean annual serum ferritin below 2500 μg/L}}{\text{Total number of transfusion dependent thalassaemia patients}} \times 100
\]
| Thalassaemia mortality rate per annum | \[
\frac{\text{Number of deaths of thalassaemia patients}}{\text{Total number of thalassaemia patients}} \times 100
\]

Secondary Indicator

Number of newly diagnosed thalassaemia major cases per annum
GUIDELINES DEVELOPMENT GROUP

Chairperson

Dr. Hishamshah Mohd Ibrahim
Senior Consultant Paediatric Haemato-oncologist
Institut Pediatrik
Hospital Kuala Lumpur
Kuala Lumpur

Members (alphabetical order)

Dr. Afifah Hassan
Consultant Haemato-pathologist
Pusat Darah Negara
Kuala Lumpur

Professor Dr. Chan Lee Lee
Professor in Paediatrics (Haemato-oncology)
Faculty of Medicine
University of Malaya

Professor Dr. Elizabeth George
Professor in Haematology
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia

Dr. Fuziah Md Zain
Senior Consultant Paediatrician
Hospital Putrajaya, Putrajaya

Dr. Goh Ai Sim
Senior Consultant Haematologist
Hospital Pulau Pinang
Pulau Pinang

Dr. Hasmawati Hassan
Senior Consultant Paediatrician
Hospital Raja Perempuan Zainab II
Kota Bharu, Kelantan

Dr. Ida Shahnaz Othman
Paediatric Haemato-oncologist
Institut Pediatrik
Hospital Kuala Lumpur, Kuala Lumpur

Dr. Izzuna Mudla Mohamed Ghazali
Public Health Physician
Health Technology Assessment Section
Ministry of Health Malaysia

Dr. Janet Hong Yeow Hua
Paediatric Endocrinologist
Hospital Putrajaya
Putrajaya

Dato’ Dr. Jimmy Lee Kok Foo
Head of Department &
Senior Consultant Paediatrician
Hospital Sultanah Nur Zahirah
Kuala Terengganu, Terengganu

Dr. Keng Wee Teik
Consultant Clinical Geneticist
Institut Pediatrik
Hospital Kuala Lumpur
Kuala Lumpur

Dr. Lily Wong
Consultant Haematologist
Hospital Queen Elizabeth
Kota Kinabalu, Sabah

Dr. Ong Gek Bee
Senior Consultant Paediatric Haemato-oncologist
Hospital Umum Sarawak
Kuching, Sarawak

Mr. Rizal Husaini Razali
Pharmacist,
Hospital Kuala Lumpur
Kuala Lumpur

Dr. Safiah Bahrain
Public Health Physician
Family Health Development Division
Ministry of Health Malaysia

Dr. Safiah Bahrin
Public Health Physician
Family Health Development Division
Ministry of Health Malaysia

Dr. Salman Mohd Sahid
Consultant Haemato-pathologist
Hospital Tengku Ampuan Afzan
Kuantan, Pahang

Ms. Sim Lan Ing
Nursing Sister
Hospital Umum Sarawak,
Kuching, Sarawak

Dr. Wan Zainab Hayati Wan Mokhtar
Consultant Radiologist
Hospital Ampang, Ampang, Selangor

Dr. Yeoh Seoh Leng
Paediatric Haemato-oncologist
Hospital Pulau Pinang, Pulau Pinang
REVIEW COMMITTEE

The draft of these guidelines was reviewed by a panel of independent expert referees from both public and private sectors, who were asked to comment primarily on the comprehensiveness and accuracy of interpretation of the evidence supporting the recommendations in the guidelines.

Chairman

Dr. Hussain Imam Haji Muhammad Ismail
Head of Services and Senior Consultant Paediatrician
Institut Pediatrik
Hospital Kuala Lumpur, Kuala Lumpur

Members (in alphabetical order)

Professor Dr. A. Rahman A. Jamal
Director,
UKM Medical Biology Institute (UMBI)
Medical Faculty
Universiti Kebangsaan Malaysia

Datin Dr. Rugayah Bakri
Deputy Director
Health Technology Assessment Section
Medical Development Division
Ministry of Health Malaysia

Datin Dr. Aziah Ahmad Mahayiddin
Head of Services, Director and Senior
Consultant Respiratory Physician
Institut Perubatan Respiratori
Hospital Kuala Lumpur, Kuala Lumpur

Dato' Dr. Yasmin Ayob
Senior Consultant Haemato-Pathologist
Pusat Darah Negara
Kuala Lumpur

Mr. Yip Huen Weng
Member
Thalassaemia Society of University Hospital (THASUH)
Kuala Lumpur

Datin Dr. Zaharah Musa
Head of Services and Senior Consultant
Radiologist
Hospital Selayang
Batu Caves, Selangor

Dr. Jameela Sathar
Senior Consultant Haematologist
Hospital Ampang
Ampang, Selangor

Dr. Noor Aziah bt Zainal Abidin
Public Health Physician
Obstetric & Gynecology and Paediatric Unit
Medical Development Division
Ministry of Health Malaysia

Professor Dato' Dr. Raja Khuzainah Raja Abdul Razak
Professor in Paediatrics
Faculty of Medicine
Universiti Teknologi Mara

Dato' Dr. Raja Khuzaiah Raja Abdul Razak
Professor in Paediatrics
Faculty of Medicine
Universiti Teknologi Mara
EXTERNAL REVIEWERS

The following external reviewers provided feedback on the draft

Dato' Dr. Chang Kian Meng
Head of Haematology Service & Senior Consultant Haematologist
Hospital Ampang
Ampang, Selangor

Datin Dr. G. Duraisamy
Consultant Haematologist
Gribbles Pathology (M) Sdn. Bhd.
Petaling Jaya, Selangor

Professor Dr. M. K. Thong
Professor and Consultant Paediatric Geneticist
Faculty of Medicine
University of Malaya

Dr. Moy Foong Ming
Senior Lecturer/Dietitian
Faculty of Medicine
University of Malaya

Dr. Norhanim Asidin
Director
Pusat Darah Negara
Kuala Lumpur

Dr. Salmah Bahari
Deputy Director (Pharmacy)
Kuala Lumpur Federal Territory Health Department
Kuala Lumpur

Associate Professor Dr. Vip Viprakasit
Consultant Paediatric Haematologist
University of Mahidol
Bangkok, Thailand

Professor Dr. Wan Ariffin Abdullah
Professor and Consultant Paediatric Haematolo-oncologist
Faculty of Medicine, University of Malaya

Dr. Wan Norhayati bt Wan Mansor
Family Medicine Specialist
Klinik Kesihatan Jerantut
Jerantut, Pahang

Datuk Dr. Zulkifli Ismail
Consultant Paediatric Cardiologist
Selangor Medical Centre
Subang Jaya, Selangor
ALGORITHM FOR VOLUNTARY AND CASCADE SCREENING

Walk-in for voluntary screening*

- Pre-test counselling

Index Case
- Thalassaemia Major / Carriers
 - Offer pre-test counselling and screening for family members (Uncles, aunts and cousins of the index case)
 - Offer pre-test counselling and screening for immediate family members (Parents + siblings of the index case)

FBC
- Hb - normal, MCH > 27 pg
- Hb - low, MCH ≤ 27 pg

Post-test counselling

Response to treatment
- Check & treat for iron deficiency anaemia
- YES → Continue treatment
- NO → Consult Haematologist/ Paediatrician/Physician
 - YES → Definitive diagnosis
 - NO → Definitive diagnosis
 - NO → Counselling

Send FBC result & unstained PBF slide with remaining blood to referral hospital for Hb analysis

DEFINITIVE DIAGNOSIS

- Normal
- Thalassaemia carrier

ALGORITHM FOR IRON CHELATION IN TRANSFUSION DEPENDENT THALASSAEMIA

Start Iron Chelation Therapy

if serum ferritin $> 1,000 \mu g/L$

(usually at age 2-3 years)

Monotherapy

First line Iron Chelator: DFO 20-40 mg/kg/day (children) and up to 50 - 60 mg/kg/day (adults) s/c slow infusion 5 nights per week

If inadequate chelation with DFO, consider:

- DFX 20 - 30 mg/kg/day in young children more than 2 years old OR
- DFP 75 - 100 mg/kg/day if more than 6 years old

Adequate chelation:

Serum ferritin $< 2,500 \mu g/L$

$T2^*_{heart} > 20 \text{ ms}$

$LIC < 7 \text{ mg Fe/g DW}$

(If MRI is available, $T2^*_{MRI}$ is indicated for those >10 years old)

Continue current iron chelator and aim for serum ferritin $< 1,000 \mu g/L$

Inadequate chelation:

Serum ferritin $> 2,500 \mu g/L$

$T2^*_{heart} < 20 \text{ ms}$

$LIC > 7 \text{ mg Fe/g DW}$

(If MRI is available, $T2^*_{MRI}$ is indicated for those >10 years old)

Check compliance, Optimise dose of current drug or monotherapy

Switch to alternatives:

- Another monotherapy
- Consider DFP-DFO combination
- Intravenous DFO

Abbreviations:

- DFO – Desferrioxamine
- DFP – Deferiprone
- DFX – Deferasirox
- LIC – Liver Iron Concentration
TABLE OF CONTENTS

GUIDELINES DEVELOPMENT AND OBJECTIVE .. 1
GUIDELINES DEVELOPMENT GROUP .. 5
REVIEW COMMITTEE .. VI
EXTERNAL REVIEWERS .. VII
ALGORITHM FOR VOLUNTARY AND CASCADE SCREENING VIII
ALGORITHM FOR IRON CHELATION IN TRANSFUSION DEPENDENT THALASSAEMIA .. IX

1. INTRODUCTION ... 1
2. DIAGNOSIS ... 3
3. COUNSELLING AND SCREENING ... 9
4. BLOOD TRANSFUSION THERAPY .. 13
5. SPLENECTOMY .. 16
6. ASSESSMENT OF IRON BURDEN .. 19
7. IRON CHELATION THERAPY ... 21
8. HAEMATOPOIETIC STEM CELL TRANSPLANTATION (HSCT) 29
9. COMPLICATIONS AND THEIR MANAGEMENT 33
9.1 ENDOCRINE COMPLICATION .. 33
9.2 CARDIAC COMPLICATION ... 45
9.3 INFECTION ... 48

10. NUTRITION AND SUPPLEMENT .. 54
REFERENCES ... 56
APPENDIX 1 - SEARCH STRATEGY ... 66
APPENDIX 2 - CLINICAL QUESTIONS .. 68
APPENDIX 3 - GENETICS RISKS IN THALASSAEMIA 71
APPENDIX 4 - PRENATAL DIAGNOSIS ... 74
APPENDIX 5 - MALAYSIAN THALASSAEMIA ASSOCIATIONS 75
APPENDIX 6 - COSTS OF CHELATING AGENTS 77
APPENDIX 7 - MID-PARENTAL HEIGHT MEASUREMENT 78
APPENDIX 8 - SCHEDULE OF INVESTIGATIONS FOR ENDOCRINE COMPLICATIONS IN TRANSFUSION DEPENDENT THALASSAEMIA ... 81

LIST OF ABBREVIATIONS .. 82
ACKNOWLEDGEMENTS, DISCLOSURE STATEMENTS AND SOURCES OF FUNDING .. 84
LEVELS OF EVIDENCE & GRADES OF RECOMMENDATION 84
I. INTRODUCTION

The thalassaemias are a heterogeneous group of genetic disorders with defective synthesis of one or more globin chains. In Malaysia, the most common types are the α and β thalassaemias. The β thalassaemias together with its heterozygous interaction with HbE disease constitute the bulk of the patients’ load.

The most recent data from the Malaysian Thalassaemia Registry (2009, August) showed a total of 4,541 registered patients of which 3,310 consist of the transfusion dependent β thalassaemia major and HbE β thalassaemia patients. The thalassaemia intermedias accounted for 455 patients while HbH disease affected 410 individuals and the other subtypes made up the rest.¹

The East Malaysian state of Sabah had the most number of registered patients standing at 1,272 with the Kadazan-Dusun ethnic group contributing almost half of these affected individuals. The neighbouring state of Sarawak however only registered 133 patients with incidentally no indigenous thalassaemic Iban. The peninsular states showed a distribution pattern that followed the population density but with a distinct pattern of HbE β thalassaemia being more pronounced in the northern states bordering Thailand.¹

The National Thalassaemia Prevention and Control Programme gained the Malaysian Cabinet approval in the late 2004. In early 2005, budget was made available to acquire infusion pumps and provide iron chelation therapy nationwide. This national programme comprises of four major activities namely:

★ provision of comprehensive management for thalassaemia patients
★ provision of a population screening and counselling at the primary care level
★ development and establishment of a National Thalassaemia Registry
★ building partnerships for health education and promotion in facilitating the people to take positive action in the control and prevention of thalassaemia
During the first inaugural National Steering Committee meeting chaired by the Health Minister on 4th October 2005, a decision was made to create a Clinical Management Committee to provide oversight for one of the major components of the programme which is the provision of a comprehensive management for thalassaemia patients in the country.

One of the desired outcomes from the meeting was developing a common thalassaemia CPG to be used across the country. With proper management, there should be a significant improvement in morbidity and mortality outcomes of patients with thalassaemia. All healthcare professionals managing thalassaemia patients are to be trained well with the best clinical practice and there should be serious initiatives to encourage thalassaemia-related clinical research activities.

These CPG will address not only clinical issues but also look at important public health aspects of screening and counselling at the primary care level. The burden of thalassaemia to Malaysian healthcare services will become more apparent in future with the improvement in patient care. This paradox is due to the changing landscape of patient demographics with more long term adult survivors requiring even more healthcare attention. These CPG will evolve and its contents will change to reflect the growing body of science to find solutions to this multi-dimensional public health problem.
2. DIAGNOSIS

2.1 CLINICAL DIAGNOSIS

Clinical diagnosis of thalassaemia is based on:

A. Presentation of β thalassaemia major at 4 - 6 months or a child younger than 2 years of age.2-3 Level III

Clinical features for β thalassaemia major are:
- a. Anaemia2-6 Level III
- b. Hepatosplenomegaly2-5,6 Level III
- c. Jaundice4,6 Level III
- d. Thalassaemia facies3-5,7-8 Level III
- e. Growth failure/retardation4-7 Level III

B. Presentation of β thalassaemia intermedia is at a later age3,4,6 Level III

Clinical features of β thalassaemia intermedia are:
- a. Milder anaemia3,6 Level III
- b. Extensive thalassaemia facies6 Level III
- c. Hepatosplenomegaly6 Level III

2.2 LABORATORY DIAGNOSIS

2.2.1 Screening Tests

Full blood count (FBC) generated by an automated blood counter

Scrutiny of the red cell indices is the first step. Red cell indices are of particular importance in screening for α and β thalassaemia trait and in distinguishing between $\delta\beta$ thalassaemia and hereditary persistence of foetal haemoglobin.9 Level III

- Mean corpuscular volume (MCV) & mean corpuscular haemoglobin (MCH)
 Red cells are hypochromic (MCH < 27 pg) and microcytic (MCV < 80 fl) in thalassaemia as well as iron deficiency.9-10 Level III
 MCH is preferable because it is less susceptible to storage changes.

 Haemoglobinopathies such as Hb Constant Spring will have a normal MCV and normal MCH and so will be missed if the above indices are used as a screening test.11 Level III
★ Red Cell Distribution Width (RDW - measure of the degree of variation in red cell size). Iron deficiency is characterised by an increase in RDW (CV > 14%).\(^{12}\) Level III The thalassaemia trait produces a uniform microcytic red cell population without a concomitant increase in RDW. RDW is increased in thalassaemia intermedia and thalassaemia major.\(^{13-14}\) Level III If iron deficiency is present, it is essential to correct this before proceeding to haemoglobinopathy workups.\(^{10}\) Level III

★ Refer to Algorithm for Voluntary and Cascade Screening.

2.2.2 Diagnostic Tests

Special Haematological Tests

High performance liquid chromatography (HPLC)

HPLC provides precise quantification of HbA\(_2\) and HbF, and presumptive identification and quantification of variant haemoglobins.\(^9\) Level III

Diagnosis of \(\beta\) thalassaemia trait requires accurate determination of increased HbA\(_2\) percentage.\(^{11}\) Level III The proportion of HbA\(_2\) is dependent on the precise mutation present. In most cases of heterozygosity for \(\beta^0\) or severe \(\beta^+\) thalassaemia, the HbA\(_2\) is 4 - 9%. In mild \(\beta^+\) thalassaemia it is usually 3.6 - 4.2%.\(^{15}\) Level III

A low serum ferritin indicates that there is iron deficiency but does not exclude a diagnosis of \(\beta\) thalassaemia trait.\(^{16}\) Level III If iron deficiency is excluded and the HbA\(_2\) percentage is normal, the diagnosis of \(\alpha\) thalassaemia should be considered.\(^9\) The possibility should be borne in mind that thalassaemia indices with a normal HbA\(_2\) may be due to coexisting \(\beta\) and \(\delta\) thalassaemia.\(^{10}\) Level III

HbA\(_2\) level can be falsely lowered by iron deficiency therefore this requires correction before repeating the HPLC to quantify Hb subtypes.\(^{11}\) Level III Further tests/alternative techniques are indicated when the nature of any variant haemoglobin detected by HPLC is of potential clinical relevance.\(^9\) Level III

Other useful haematological tests are:\(^{10}\) Level III
★ Peripheral blood film (PBF)
★ Haemoglobin electrophoresis
★ H-inclusion test
★ Kleihauer test
★ Sickle solubility test
2.2.3 Laboratory Findings

2.2.3.1 β Thalassaemia Major

In transfusion dependent β thalassaemia major, the patients are homozygous β0 thalassaemia (β0/β0) or with minimal HbA synthesis (β+/β0). Levels III

Features are:

★ Anaemia is severe (7 g/dL and below)
★ Haematocrit low
★ RBC low
★ MCV low (50 - 60 fl)
★ MCH low (12 - 18 pg)
★ MCHC reduced
★ PBF: Marked anisocytosis, poikilocytosis (including fragments and tear-drop poikilocytes), hypochromia and microcytosis. Basophilic stippling, Pappenheimer bodies and target cells. Circulating nucleated red cells showing defective haemoglobinisation and dyserythropoietic features are present. The total white cell count and the neutrophil count are increased. If hypersplenism develops, there is leucopaenia, neutropaenia and thrombocytopenia. Levels III

Figure 1. PBF of Thalassaemia Major
The predominant Hb subtype seen is HbF (> 90%). This will be significantly elevated in nearly every case of severe β thalassaemia unless a large blood transfusion has been administered immediately before the analysis. The complete absence of HbA indicates homozygous β⁰ thalassaemia, while the diagnosis of β⁺ thalassaemia is suggested by the finding of small amounts of HbA. It is important to carry out qualitative haemoglobin electrophoresis in order to rule out structural variants.¹⁴ Level III

2.2.3.2 Thalassaemia Intermedia

Features are:
★ Anaemia is moderate (8 - 10 g/dL)
★ PBF: a milder thalassaemia picture

In β thalassaemia intermedia, the Hb subtypes seen are HbF, HbA and HbA₂.¹⁷ Level III If the HbA₂ level is above 10%, this suggests the presence of HbE. If the predominant Hb consists of HbF and HbE, this corresponds to the diagnosis of HbE-β thalassaemia. In β⁺ thalassaemia intermedia, there is raised HbF.

HbH disease presents as thalassaemia intermedia. It results from the interaction of α-thal 1 (α⁰) with α⁺-thalassaemia (deletional or non-deletional). The non deletional HbH disease (−SEA/ααCS) is clinically more severe than the deletional type (−SEA/−α).¹⁸ Level III

![Figure 2. PBF of Thalassaemia Intermedia](image-url)
2.2.4 The Role of Molecular Diagnosis in Thalassaemia

DNA tests are required in:
1. Inability to confirm a haemoglobinopathy by haematological tests
2. Genetic counselling and prenatal diagnosis

DNA analysis is required to identify carriers of silent β thalassaemia or normal HbA$_2$, β thalassaemia, α^0 thalassaemia and some α^+ thalassaemia. These molecular methods are also required for identification of novel and rare haemoglobin variants.19 Level III

Majority of homozygous β thalassaemias can be diagnosed with simple investigations but in heavily transfused patients, DNA analysis will be able to identify the thalassaemia. The diagnosis is strengthened by findings of heterozygous β thalassaemia in both parents.14 Level III

2.2.5 Thalassaemia Mutations in Malaysia

α thalassaemias are most often due to gene deletions leading to α-thal 1 (α^0) and α-thal 2 (α^+) thalassaemia in the Malaysian population. α-thal 1 (α^0) results commonly from deletion of 17.5 to 20 kb of both duplicated α globin genes leaving the δ 1 globin gene intact (known as the Southeast Asian α^0 molecular defect).

Deletions of the globin gene complex that cause α-thal 2 (α^+)-thalassaemia remove one α globin gene. Two types of α-thal 2 deletional defects have been observed. One type involves a deletion of 4.2 kb of DNA (leftward type, $\alpha^{-4.2}$) and another removes 3.7 kb of DNA (rightward type, $\alpha^{-3.7}$). The latter is the most common α^+ thalassaemia defect in Malaysia and has been found both in Malays and Malaysian Chinese.18 Level III

β thalassaemias are heterogeneous at the molecular level with more than 200 different molecular defects identified.17 Despite this heterogeneity, each at risk population has its own spectrum of common mutations, usually from 5 to 10, a finding that simplifies mutation analysis.17 Level III
In Malaysia, 14 β thalassaemia mutations contribute to the majority of β thalassaemia. The interactions of these various mutations result in heterogeneity at phenotypic level. The predominant type of β thalassaemia among Malays has a β⁺ phenotype [IVS 1-5 (G→C)].

In contrast, among Malaysian Chinese, this is found to be β⁰ phenotype [FSC 41-42(-TCTT)]. β thalassaemia mutations in Malaysian Indians are heterogeneous. The common mutation seen in this group is IVS 1-5(G→C). In Sabah, especially among the Kadazan-Dusuns, the predominant mutation is the 45kb deletion (Filipino deletion). Transfusion dependent β thalassaemia patients from Sabah accounted for 25% of the total patients in Malaysia.

Table 1. β thalassaemia alleles in Malays and Malaysian Chinese

<table>
<thead>
<tr>
<th>Malays</th>
<th>Phenotype</th>
<th>%</th>
<th>Chinese</th>
<th>Phenotype</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS 1-5(G to C)</td>
<td>β⁺</td>
<td>50.0</td>
<td>Codon 41-42(-TCTT)</td>
<td>β⁰</td>
<td>49.8</td>
</tr>
<tr>
<td>IVS 1-1(G to T)</td>
<td>β⁰</td>
<td>19.4</td>
<td>IVS 2-654(C to T)</td>
<td>β⁺</td>
<td>23.4</td>
</tr>
<tr>
<td>Codon 17(A to T)</td>
<td>β⁰</td>
<td>13.9</td>
<td>-28(A to G)</td>
<td>β⁺</td>
<td>13.3</td>
</tr>
<tr>
<td>Codon 35(-C)</td>
<td>β⁰</td>
<td>8.3</td>
<td>Codon 17(A to T)</td>
<td>β⁰</td>
<td>10.1</td>
</tr>
<tr>
<td>Codon 41-42(-TCTT)</td>
<td>β⁰</td>
<td>5.6</td>
<td>FSC 71-72(+A)</td>
<td>β⁰</td>
<td>2.1</td>
</tr>
<tr>
<td>IVS 2-654(C to T)</td>
<td>β⁺</td>
<td>2.8</td>
<td>-29(A to G)</td>
<td>β⁺</td>
<td>1.3</td>
</tr>
</tbody>
</table>

RECOMMENDATION

MCH level of ≤ 27 pg should be used as a threshold for identification of carriers in thalassaemia screening. *(GRADE C)*

Diagnosis of thalassaemia should include PBF, haemoglobin electrophoresis, H-inclusion test and HPLC. *(GRADE C)*

DNA tests should be done when there is inability to confirm a haemoglobinopathy by haematological tests. *(GRADE C)*
3. COUNSELLING AND SCREENING

3.1 GENETIC COUNSELLING

3.1.1 Introduction

★ Genetic counselling is the process in which patients or relatives at risk of a disorder that may be hereditary are advised of the consequences of the disorder, the probability of developing or transmitting it, and of the ways in which this may be prevented/avoided or ameliorated.26 Level III

★ Genetic counselling is essential to protect the autonomy of an individual or couple and to fulfil their rights to maximum information about the disorder and to help them to understand and to choose among the options available.30 Level III

★ Confidentiality of genetic information needs to be respected.30 Level III

★ The success of genetic counselling depends crucially on its educational, voluntary and nonprescriptive/nondirective nature.29 Level III

★ Psychological support and emphatic relationship between the counsellor and the counselee are important elements of genetic counselling.30 Level III

3.1.2 Who should provide genetic counselling?

★ Genetic counselling should be provided by Clinical Geneticists, genetic counsellors or adequately trained medical/nursing staff who are confident at providing information regarding all aspects of thalassaemia.30-34 Level II-3

★ Genetic counselling of at risk couples and families with affected individuals, and for people with unusual carrier states or particular problem/issue, should be provided by geneticists/trained doctors.29 Level III

★ Health workers involved in providing initial screening tests need to be able to provide simple and clear information about the reasons and objectives of the tests. Lay counsellors should be avoided.29,34 Level III
3.1.3 When to provide the genetic counselling?

★ Counselling should be offered before carrier screening is conducted and after the result becomes available.35 Level III

★ Genetic counselling should be offered once a diagnosis is made and further visits may have to be arranged.35 Level III

3.1.4 Content of information

★ The topics of discussion should include: (1) information about thalassaemia, (2) treatment options, (3) the risk of having the condition and inheritance, (4) the purpose, nature and consequences of the genetic testing, (5) the risks involved in the procedure, (6) the limitations of testing, (7) alternatives the counselee should consider, (8) practical information on what will happen next, (9) the potential harm of testing, (10) the risks to family members, (11) the option of prenatal diagnosis and other choices, and (12) information on the available support groups.30,34-37 Level III [Refer to Appendix 3 and 4]

★ Suitable information should be made available.35 Level III This could be downloaded from MyHEALTH Portal \url{http://www.myhealth.gov.my}, and Thalassaemia Registry website \url{http://www.myTalasemia.net.my}

★ Contact of local support groups should be provided. [Refer to Appendix 5]

3.1.5 How should genetic counselling be conducted?

★ A counsellor should be trustworthy, proficient and knowledgeable, considerate and compassionate, maintain confidentiality, provide accurate and up to date facts, use plain and comprehensible language and allow the clients to decide for themselves.33 Level III

★ An ideal genetic counselling process should comprise:30

- An appropriately trained professional who understands well genetics and its ethical implications;
- Relevant and objective information;
- Assurance of the counselee’s understanding;
- Psychological support;
- Informed consent;
- Confidentiality of genetic information;
- Consideration of familial implications;
- Appropriate handling of potential discrimination as a result of testing; and
- Assurance of autonomous decision-making by the counselee
RECOMMENDATION

Genetic counselling should be provided by an appropriately trained professional. (Grade C)

Genetic counselling should be conducted in accordance to the following principles:

- Provision of relevant and objective information;
- Provision of psychosocial support;
- Consideration of familial implications;
- Obtaining informed consent for genetic testing;
- Ensuring confidentiality of genetic information;
- Appropriate handling of potential discrimination as a result of testing;
- Assuring autonomous decision-making by the counselee (Grade C)

3.1.6 Should prenatal diagnosis be discussed?

- In most cases, affected births stem from failure to inform parents of the possibility of risk and prevention adequately rather than their rejection of foetal testing.29 Level III

- Decisions for prenatal diagnosis are influenced by many factors, not religious or cultural factors alone.38 Level II-3

- Religion and faith are important factors in the decision making process but the perceived severity of the conditions will play a more important role.36,38-41 Level III

- Reproductive options for families affected with a transfusion-dependent β thalassaemia major patient should be decided by the families themselves after genetic counselling.42-43 Level III

RECOMMENDATION

Prenatal diagnosis should be discussed regardless of religious and cultural background. (Grade C)
3.2 CASCADE SCREENING

3.2.1 Introduction

Genetic screening, defined by the European Society of Human Genetics (ESHG) as “any kind of test performed for the systematic early detection or exclusion of a genetic disease, the predisposition or resistance to such a disease, or to determine whether a person carries a gene variant which may produce disease in offspring. Cascade screening is a genetic-screening strategy that targets relatives of carriers/affected individuals of genetic disorders through the testing of their phenotypes or genotypes.”44 Level III

3.2.2 What is the role of cascade screening in the management of thalassaemia patients?

Preventing thalassaemia births is based on identifying individuals at risk, providing adequate information on risk and possibilities to reduce that risk.29 Level III

Screening family members of an index case (thalassaemia major or carriers) should be performed.45-46 Level II-3

Family members refer to siblings, parents, aunts, uncles and cousins.

Refer to Algorithm for Voluntary and Cascade Screening

RECOMMENDATION

Screening of family members of an index case should be offered. (Grade C)
4. BLOOD TRANSFUSION THERAPY

The aim of blood transfusion in thalassaemia is to suppress extramedullary haemopoiesis while minimising complications of under transfusion and maintaining normal well being.

The decision to start blood transfusion will require proper assessment of each individual thalassaemia patient. Transfusion should be started promptly when there is clinical evidence of severe anaemia with symptoms or signs of cardiac failure, failure to thrive, and/or thalassaemia bone deformity.

4.1 MANAGEMENT

4.1.1 Pre-Transfusion Investigations

★ Patient should be phenotyped for ABO, Rh, Kell,47-49 Level II-3 Kidd, Duffy and MNSs50 Level II at diagnosis or before the first transfusion.
★ All anticipated multiply transfused thalassaemia patients should have their blood tested for viral markers at diagnosis or prior to first transfusion and at six monthly intervals: Hepatitis B surface antigen (HBsAg), Hepatitis C antibody (Anti HCV) and HIV antibody (Anti HIV).50 Level III

4.1.2 Transfusion Regime for Thalassaemia Major

After presentation, patients should be monitored closely to ascertain ability to maintain Hb above 7 g/dL over a two-week period. Regular transfusion is started when a patient is confirmed to have thalassaemia major and is unable to maintain Hb > 7 g/dL or if there is poor growth.51-52 Level III

A pre-transfusion Hb of 9 - 10 g/dL would provide enough extramedullary suppression, allowing a reduction of blood consumption and reduce excessive iron absorption from the gut.35,53,54 Level II- 3

Post-transfusion Hb should be between 13.5 - 15.5 g /dL. It should be taken at least one hour post-completion of the transfusion.
Volume of transfusion: between 15 - 20 ml/kg depending on the pre-transfusion Hb and hematocrit of packed cells provided by the blood bank (Refer to Table 2). Whenever possible, the whole bag of blood should be used to prevent wastage.\(^{51,55}\) Level III

Transfusion interval depends on pre- and post-transfusion Hb level and can be 2 - 4 weeks apart. To minimise the likelihood of alloimmunisation, antigen matched blood for ABO, Rh and Kidd and any other antigen negative blood for defined antibody should be given.\(^{50}\) Level III

Whenever possible, fresh blood of less than 14 days should be given. Leucoreduced blood should be given to all thalassemia patients.\(^{50,56}\) Level II-3

All transfusions should adhere to the Transfusion Practice Guidelines for Clinical and Laboratory Personnel \(^{50}\) Level II

4.1.3 Transfusion Regime for Thalassaemia Intermedia

Regular transfusion is indicated when there is growth failure, bone deformities or extramedullary masses such as paraspinal.

Once the decision to transfuse is made, the regime should be similar to the one adopted for thalassaemia major.\(^{35,51,53}\) Level III

Blood transfusion reduces native precoagulant RBC and the rate of thalassaemia-related hypercoagulopathy.\(^{57}\) Level III

Table 2. Expected haemoglobin rise with hematocrit levels

<table>
<thead>
<tr>
<th>Target increase in Hb</th>
<th>Haematocrit of Donor Red Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>1g/dL</td>
<td>4.2 ml/kg</td>
</tr>
<tr>
<td>2g/dL</td>
<td>8.4 ml/kg</td>
</tr>
<tr>
<td>3g/dL</td>
<td>12.6 ml/kg</td>
</tr>
<tr>
<td>4g/dL</td>
<td>16.8 ml/kg</td>
</tr>
</tbody>
</table>

Example: For patient weighing 20 kg, 360mls transfusion every 4 weeks; average Hct 60%

Annual blood requirement = 13 transfusion \(\times\) 360 mls / 20 kg = 234 ml/kg/yr

Annual pure RBC requirement = 234 \(\times\) 60% = 140.4 ml/kg/yr

Annual transfusional iron loading = 140.4 \(\times\) 1.08 = 152 mg/kg iron.

Usual Haematocrit level of Malaysian packed red cell ranges from 50 to 75%
4.2 MONITORING OF PATIENT DURING BLOOD TRANSFUSION

★ The patient should be reviewed prior to each transfusion, to determine pre-transfusion haemoglobin level and to ensure that the planned transfusion is appropriate.

★ Transfusion should be given in a proper clinical area with proper personnel supervising the transfusions.50,56 Level II-3

★ For suspected acute transfusion reaction, the blood transfusion must be STOPPED immediately and resuscitation measures taken and appropriate investigations carried out simultaneously to determine the cause.

★ For management of other transfusion reactions, reference should be made to the National Transfusion Practice Guidelines.50 Level III

RECOMMENDATION

All patients should have full red cell phenotyping at diagnosis or prior to first transfusion consisting of ABO, Rh, Kell, Kidd, Duffy and MNSs. (GRADE C)

All patients should also be tested for the following viral markers at diagnosis and every 6 months:

 a. HBsAg
 b. Anti HCV antibody
 c. Anti HIV antibody (GRADE C)

Pre-transfusion Hb should be kept between 9 - 10 g/dL. (GRADE C)

Transfusion should be initiated when the patient is confirmed to have thalassaemia major

★ and Hb < 7g/dL more than 2 weeks apart or

★ failure to thrive or bony deformities (GRADE C)

Volume of transfusion: 15 - 20 ml/kg; dependent on haematocrit of blood pack and preferably the whole pack of blood should be utilised. (GRADE C)

Interval of transfusion is usually 2 - 4 weeks apart. (GRADE C)
5. **SPLENECTOMY**

With the current practice of optimal transfusion, splenectomy can usually be avoided. However, some patients with hypersplenism might still require splenectomy to reduce transfusion requirements. Splenectomy can reduce blood consumption significantly, up to 30 - 50% and is long lasting. But it is advisable to delay splenectomy until patients are more than five years of age because of the risk of overwhelming sepsis.

In a thalassaemia patient, transfusion requirement is normally 180 ml/kg/yr of pure RBC.

Splenectomy should therefore be considered when there is:

- Increased transfusion requirements which is 1.5 times than usual or exceeding 200 - 250 ml/kg/yr of pure red blood cells
- Evidence of hypersplenism as documented by splenomegaly with persistent leucopaenia or thrombocytopaenia
- Massive splenomegaly causing discomfort and risk of infarct or rupture from trauma

Medic alert should be given post-splenectomy.

5.1 COMPLICATIONS OF SPLENECTOMY

5.1.1 Sepsis

Major long term risk after splenectomy is sepsis. Risk of sepsis post-splenectomy is more than that of normal population. Overwhelming post-splenectomy infection (OPSI) carries a mortality risk of 38 - 69%.

Streptococcus pneumoniae accounts for 50 - 90% of infections in asplenic patients. Other infective organisms include Haemophilus, Neisseria and other encapsulated gram negative organisms. Protozoan infections like babeosis and malaria are also reported to be more severe in asplenic patients.

Patients must be educated on the recognition and importance of seeking immediate medical attention if there are febrile episodes especially in the first 2 years post-splenectomy.
Physicians should have high level of awareness of the infection and if bacteremia is suspected, parenteral antibiotics against Pneumococcus and Haemophilus should be started.64-66 Level I

5.1.1.1 Overwhelming Post - Splenectomy Infection (OPSI)

Characteristics of OPSI include sudden onset of fever and chills, vomiting and headache. It can progress rapidly to hypotensive shock and DIVC. Therefore prevention and early intervention is important.

Risk factors are:
★ Age < 4 years old
★ First two years post-splenectomy - risk reduces with time72 Level II-2

Treatment of OPSI:
★ Empirical broad spectrum parenteral antibiotics should be immediately given such as third generation cephalosporins and aminoglycosides.

5.1.1.2 Prevention

Immunoprophylaxis and chemoprophylaxis are recommended:
1. Immunoprophylaxis: 64-66 Level I
 ★ Pneumococcal vaccination using 23-valent polysaccharide vaccine at least two weeks before surgery. Revaccination is required at five years post-splenectomy.
 ★ HIB vaccination two weeks pre-surgery if not vaccinated previously.
 ★ Meningococcal vaccination is recommended in endemic areas.

2. Chemoprophylaxis
 ★ Use of penicillin has been shown to reduce risk of sepsis even without immunisation.73 Level III
 ★ Oral Penicillin prophylaxis for life. Importance of compliance to prophylactic antibiotics should be repeatedly stressed to both patients and parents especially during the first two years post-splenectomy.64-66 Level I, 74 Level II-3
Management of Transfusion Dependent Thalassaemia

- IM Benzathine penicillin 3-4 weekly can be used as an alternative.
- For patients allergic to penicillin, alternatives include erythromycin, cotrimoxazole and moxifloxacin.

5.1.2 Thrombotic Risk

Thromboembolic phenomenon is more common in thalassaemia intermedia (4 - 10%) than thalassaemia major (0.9 - 4%). In splenectomised thalassaemia intermedia, the risk can increase up to 30%. Use of short term anticoagulation may be indicated during periods of increased risk for example immobilisation and post-surgery.

5.1.3 Thrombocytosis

Post-splenectomy thrombocytosis is a known complication and the use of low dose aspirin or dipyridamole if platelet count is more than 800 x 10⁹/L may be considered.

RECOMMENDATION

Splenectomy may be considered when a patient of more than five years old presents with any of the following:

1. Increased transfusion requirements exceeding 200 - 250 ml/kg/year pure RBC
2. Evidence of hypersplenism
3. Massive splenomegaly (Grade C)

Immunoprophylaxis and chemoprophylaxis must be adhered to. Patients must also be educated on the risks so that they can seek early treatment. (Grade A)

Thromboembolic phenomenon is more common in patients with thalassaemia intermedia, therefore short term anti-thrombotic prophylaxis should be considered during risk periods. (Grade C)

Low dose aspirin can be considered for post-splenectomised patients with platelet count above 800 x 10⁹/L. (Grade C)
6. ASSESSMENT OF IRON BURDEN

Monthly packed red blood cell (PRBC) transfusions will result in an iron intake of 0.3 - 0.5 mg/kg/day. After about 10 - 20 transfusions, most patients will have a serum ferritin (SF) level exceeding 1000 µg/L, an iron load considered high enough to warrant iron chelation therapy.85-86 Level III

Assessment of iron intake should include accurate documentation of the dates, frequency and volume of PRBC received. Information on the patient’s weight and haematocrit of PRBC would enable calculation of the iron intake per day.

6.1 SERUM FERRITIN (SF)

There is correlation between the number of transfusions received and SF levels especially in those who are younger and have not received many units of blood.87 Level II-3 In addition, measuring the mean SF level over a period of time and the trend of SF would give a good estimate on the risk of complications secondary to iron overload.88 Level II-3 However, there are limitations on SF measurements and they may not accurately reflect total body iron stores. Patients may have low SF levels for years but also have severe myocardial siderosis measured by MRI.89 Level II-3

Currently, many patients may not readily have access to measurements of liver and cardiac iron stores by biopsy or radioimaging. Thus, SF levels may continue to be the main guide to management of iron chelation therapy and an increasing trend of SF levels would suggest inadequate chelation.

6.2 LIVER IRON CONCENTRATION (LIC)

There is evidence that total liver iron is a constant fraction of total body iron90 Level II-3 and hence, LIC as measured by liver biopsy has been used in the past as the gold standard to reflect body iron load. Normal individuals have LIC < 1.8 mg Fe/g dry weight (DW). Values > 3 mg Fe/g DW would reflect overload and the need for iron chelation therapy. However liver biopsy is invasive and may be affected by sampling error particularly in cirrhotic livers or patients with hepatitis.91 Level II-2
6.3 MAGNETIC RESONANCE IMAGING (MRI)

MRI is a useful and non invasive tool for estimating tissue iron overload. Two basic approaches have been developed:

1. Indirect quantitative methods that use signal intensity ratio (SIR)
2. Direct quantitative methods that use T2, T2*, or R2, R2* parameters

6.3.1 Cardiac and Liver T2

Cardiac and liver T2 can be measured directly. However, the techniques are limited due to its sensitivity to cardiac and respiratory motions.92-93 Level II-3

6.3.2 MRI T2*

MRI T2* is fast and easy to acquire, robust to motion, more sensitive to iron levels and reproducible over time in different centres with different scanners. However it requires a patient’s cooperation and ability to do a breath-hold during the procedure. Studies have demonstrated the utility of this parameter in predicting early cardiac siderosis versus conventional echocardiography. Values of < 20 ms indicate cardiac iron overload.94-95 Level II-3 The values are also comparable to liver iron concentration by biopsy.72 Level II-3 Ongoing studies are being done to assess tissue iron in other organs by T2* measurements.

6.3.3 MRI R2

MRI R2 has been shown to correlate with LIC. Measurement of R2 by MRI has now been validated as a reliable and reproducible measurement of LIC.96-97 Level II-2 However, analysis of MRI R2 is solely performed by a commercial entity and therefore expensive.

6.4 THE NEED TO DO BOTH LIVER AND CARDIAC IRON ASSESSMENTS

Studies have failed to show any significant correlation between liver and cardiac iron overload by MRI. Therefore, it is necessary to measure both liver and cardiac iron separately.89,94,98 Level II-3

RECOMMENDATION

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum ferritin levels should be monitored every 3 - 6 months.</td>
<td>C</td>
</tr>
<tr>
<td>MRI T2* should be used to assess cardiac iron status in older children.</td>
<td>C</td>
</tr>
<tr>
<td>MRI R2 can be used to assess liver iron.</td>
<td>C</td>
</tr>
</tbody>
</table>
7. **IRON CHELATION THERAPY**

The treatment for iron overload in blood transfusion dependent thalassaemia patients is iron chelation. Experience with the earliest chelator desferrioxamine showed that good compliance and ability to keep the serum ferritin levels consistently < 2000 to 2500 µg/L was associated with improved survival.

The aims of iron chelation therapy are to prevent or reduce iron overload and hence minimise tissue and organ damage. Accurate and reliable tools for measurement of iron overload are necessary for titration of iron chelation therapy. Serum ferritin level should be kept below 1000 µg/L as it is associated with less iron overload complications while serum ferritin level maintained below 2,500 µg/L significantly improve cardiac disease free survival.

Where liver and cardiac iron load are measurable, LIC should be kept between 3 - 7 mg Fe/g DW and cardiac T2* > 20 ms.

7.1 **IRON CHELATORS**

7.1.1 Desferrioxamine (DFO) Monotherapy

Indications

Desferrioxamine monotherapy has been used since 1960s in paediatric thalassaemia patients with iron overload. Patients who are compliant and able to maintain serum ferritin levels consistently < 2500 µg/L have improved survival.

The current standard treatment is slow subcutaneous infusion over at least 8 hours per night for 5 nights per week in a dose of 20 - 40 mg/kg/day (children) and up to 50 - 60 mg/kg/day (adults). The dose is adjusted based on the therapeutic index. To avoid excessive chelation, the therapeutic index is kept < 0.025 at all times. DFO should be used with caution in children under 3 years of age in view of its potential toxicity to bone development and growth.

\[
\text{Therapeutic Index} = \frac{\text{Mean daily dose (mg/kg)}}{\text{Serum ferritin (µg/L)}}
\]

\[
\text{Mean Daily Dose} = \frac{(\text{Actual dose in each daily infusion x doses per week})}{\text{Body weight (kg)}} \times 7\text{days}
\]
This tedious and unpleasant subcutaneous drug regime has resulted in poor compliance and hence compromises the effectiveness of DFO. In clinical practice, the compliance to DFO monotherapy was reported to range from 59 to 78%105 Level III leading to suboptimal DFO therapy and high body iron overload and cardiac iron toxicity.

DFO continuous intravenous infusion can be used as a rescue therapy in patients with acute cardiac problems and has been shown to reverse cardiomyopathy.106 Level III

There may be a role for subcutaneous DFO twice daily bolus treatment if infusion pump is not available.107 Level III

Monitoring
Refer to Table 3

Side effects
Refer to Table 4

7.1.2 Deferiprone (DFP) Monotherapy

Indications
Oral DFP given three times a day in a dose of 75 mg/kg/day is an effective iron chelator in children more than 6 years old and its efficacy is comparable to DFO.51,75,108,109 Level I Clinical studies consistently showed that DFP had a better cardio-protective effect than DFO.110 Level II-1,111-114 Level II-2 The compliance to DFP monotherapy which ranged from 79 to 98\% was better than that of DFO monotherapy.105 Level II-2

Monitoring
Refer to Table 3

Side effects
Refer to Table 4

The risk of agranulocytosis (ANC <500 x 10\(^3\)/L) is 0.2 to 0.6 per 100 patient years. The risk of neutropaenia (ANC <1500 x 10\(^3\)/L) is 2.8 to 5.4 per 100 patient years. The neutropaenia is reversible and more likely to occur in those with intact spleens.108,115 Level II-2

Any patient with documented neutropaenia (ANC<1000 x 10\(^3\)/L) should have DFP stopped and never to be rechallenged. Any patient who develops fever while on DFP should have DFP stopped temporarily, neutrophil count tested and reviewed.
7.1.3 Deferasirox (DFX) Monotherapy

Indications
The newest iron chelator DFX is an alternative to DFO in children from 2 years old.116,117 Level I, 118,119 Level II-1 Oral DFX monotherapy taken once daily in a dose of 20 - 30 mg/kg/day is as efficacious as conventional DFO slow infusion therapy in reducing liver iron concentration and serum ferritin. DFX has been used in clinical practice for less than five years. The high cost of DFX therapy at present may be a hindrance to its wider usage. In a recent systematic review, DFX was more cost effective than DFO based on quality adjusted life years (QALY), and DFP was more cost-effective than DFX in older children.120 Level I

Monitoring
Refer to Table 3

Side effects
Refer to Table 4

DFX may cause a reversible, dose-related, non-progressive increase in serum creatinine within the upper limit of normal.121 Level I

7.1.4 Combination Therapy DFO and DFP

Indications
Combination of DFO and DFP therapy is indicated when monotherapy fails.121,122 Level II-1, 123,124 Level II-2

Monitoring
Refer to Table 3

Side effects
Refer to Table 4

The side effects of DFO-DFP combination are the same as the side effects of the individual chelators.122 Level II-1, 123 Level II-2
7.2 WHEN TO START IRON CHELATION THERAPY?

The optimal threshold to start iron chelation therapy is undetermined but based on good clinical practice, patients who have received > 10 units of blood and when serum ferritin is > 1000 µg/L on more than two occasions in at least two weeks apart are recommended to start on iron chelation therapy. All iron chelators are listed as specialist item (list A/A*) in Ministry of Health Drug Formulary 2008.

RECOMMENDATION

All patients with iron overload (SF > 1000 µg/L on two occasions in at least two weeks apart) should receive iron chelation therapy. *(Grade C)*

Iron chelation therapy should be started after discussion with a paediatrician/physician. *(Grade C)*

7.3 CHOICE OF CHELATORS

Patients who have received regular PRBC transfusions for only a few years are likely to have mild iron overload. For these patients, all three iron chelators (DFO, DFP and DFX) are efficacious in reducing serum ferritin levels and LIC. Comparison between subcutaneous DFO at 40 - 50 mg/kg/day and DFP at 75 mg/kg/day showed similar efficacy in patients whose SF levels were generally < 3000 µg/L. Cappelini et al. showed that DFX at 20 - 30 mg/kg/day had similar efficacy compared with DFO at 30 - 50 mg/kg/day in reducing SF and LIC. The choice of an iron chelator for patients with mild to moderate iron overload would depend on availability, cost, tolerability, patient preferences and quality of life issues. DFO has the advantage of a long history of use in terms of safety and efficacy and currently should be offered as the first line agent when starting iron chelation therapy. Compliance issues with DFO need to be monitored, counselled and rectified wherever possible before a change of chelator is contemplated.
For patients with significant iron overload (SF 2000 - 8000 µg/L or LIC 5 - 15 mg Fe/g DW), Piga et al. showed that both DFX at 20 mg/kg/day and DFO at 40 mg/kg/day were able to reduce LIC.119 Level II-1 Similarly, DFP at 75 mg/kg/day is comparable to DFO at 40 - 50 mg/kg/day.135 Level II-1 There is evidence that combination therapy with DFO and DFP is better than monotherapy.122 Level I Patients who do not show adequate response while on optimised doses of monotherapy would be suitable candidates for combination therapy. Definition of combination therapy has varied but rests on DFP at 75 - 100 mg/kg/day with DFO at 40 - 50 mg/kg/day given two to five times per week.121,128 Level I

For the use of DFO, optimisation would include increasing the dose to 60 mg/kg/day, increasing the duration of infusion (even up to 24 hours per day) and the number of days of therapy (up to 7 days per week). For DFP a dose of 100 mg/kg/day100,116 Level II-2,118 Level I should be considered while for DFX, doses of 40 mg/kg/day have been used.136 Level I

Adequate response to iron chelation therapy is reflected by a reduction in serum ferritin levels over time such as SF reduced by 1000 µg/L over 12 months. Iron is removed from tissues at a slow rate and decisions to change chelators should not be made on a single serum ferritin level.
RECOMMENDATION

Desferrioxamine (DFO) therapy
- Subcutaneous slow DFO infusion over five days per week is the first line iron chelator in view of its efficacy in compliant patients and proven safety record. **(Grade A)**
- Patients on DFO therapy should be monitored for non-compliance or intolerance to the therapy. **(Grade B)**

Deferiprone (DFP) therapy
- DFP monotherapy is indicated in patients older than 6 years if DFO treatment is inadequate or intolerable. **(Grade B)**
- DFP is indicated in patients who are at risk of cardiac iron toxicity. **(Grade B)**
- Patients on DFP should have weekly FBC. **(Grade B)**
- DFP should be discontinued in the presence of neutropaenia. **(Grade B)**

Deferasirox (DFX) therapy
- DFX monotherapy once daily is indicated in patients from 2 years old where DFO is unacceptable, inadequate or intolerable. **(Grade B)**
- Patients who are on DFX should have their serum creatinine monitored monthly. **(Grade B)**

Combination of DFO & DFP
- DFO & DFP combination is indicated in patients with severe iron overload or inadequate chelation with monotherapy. **(Grade B)**

Tailoring chelation by iron load*
- Patients with mild iron overload (SF < 2500 µg/L or LIC < 7 mg Fe/g DW liver) may use DFO, DFP or DFX. **(Grade B)**
- Patients with moderate iron overload (SF 2500 - 5000 µg/L or LIC 7 - 15 mg Fe/g DW liver) should optimise their respective chelator monotherapy or consider combination therapy. **(Grade B)**
- Patients with severe iron overload (SF > 5000 µg/L or LIC >15 mg Fe/g DW liver) should consider combination therapy. **(Grade B)**

Treatment Target
- Aim to keep SF level near to 1000 µg/L, LIC < 7 mg Fe/g DW liver and cardiac T2* > 20 ms. **(Grade C)**

* The above categorisation of mild, moderate and severe iron overload is partly arbitrary and derived from accumulated literature.
Table 3. Summary of Iron Chelators

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Desferrioxamine (DFO) (500mg vial, add 5ml water)</th>
<th>Deferiprone (DFP) (500mg tablet)</th>
<th>Deferasirox (DFX) (125mg tablet; 500mg tablet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose range (mg/kg/day)</td>
<td>20 - 60</td>
<td>50 - 100 (usually ≥ 75 mg/kg/day to achieve negative iron balance)</td>
<td>20 - 30</td>
</tr>
<tr>
<td>Half-life</td>
<td>20 min</td>
<td>2 - 3 hours</td>
<td>8 - 16 hours</td>
</tr>
<tr>
<td>Administration</td>
<td>Parenteral</td>
<td>Oral, tds</td>
<td>Oral daily dose (tablet dispersed in water)</td>
</tr>
<tr>
<td></td>
<td>Standard treatment is slow s/c infusion over 8 - 12 hours for 5 nights per week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron excretion</td>
<td>Urine, stool</td>
<td>Urine</td>
<td>Stool</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Auditory/eye assessment annually</td>
<td>FBC & differentials weekly</td>
<td>Serum creatinine, ALT, proteinuria monthly</td>
</tr>
<tr>
<td></td>
<td>If high fever, DFO should be stopped temporarily</td>
<td>ALT every 3 months</td>
<td>Auditory and eye assessment annually</td>
</tr>
<tr>
<td>Advantages</td>
<td>Efficacious</td>
<td>Enhanced removal of cardiac iron</td>
<td>Once daily oral administration</td>
</tr>
<tr>
<td></td>
<td>Used > 40 years</td>
<td>May be combined with DFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May reverse cardiac disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May be combined with DFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Poor compliance</td>
<td>Risk of agranulocytosis</td>
<td>Need to monitor renal function</td>
</tr>
<tr>
<td></td>
<td>Potential ear, eye, bone toxicity</td>
<td>Need for weekly FBC</td>
<td>Drug is expensive compared to other chelators</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Long term data not available</td>
</tr>
</tbody>
</table>

* Drug cost for different type of iron chelating agents (Refer to Appendix 6).
Table 4. Summary of Common Side Effects of Iron Chelators

<table>
<thead>
<tr>
<th>Side Effects</th>
<th>Desferrioxamine (DFO)</th>
<th>Deferiprone (DFP)</th>
<th>Deferasirox (DFX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin - local pain, infection at injection sites</td>
<td>6 - 85%<sup>51,75,110,122</sup></td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Skin rashes</td>
<td>As above</td>
<td>Dry skin if associated with zinc deficiency</td>
<td>7%<sup>116</sup></td>
</tr>
<tr>
<td>Haematological</td>
<td>NA</td>
<td>Agranulocytosis (ANC < 500 x 10<sup>3</sub>/L) is 0.2 per 100 patient years and Neutropenia (ANC < 1500 x 10<sup>3</sub>/L) is 2.8 per 100 patient years.<sup>108,115</sup></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thrombocytopenia in 45% of children < 7 years old.<sup>137</sup></td>
<td></td>
</tr>
<tr>
<td>Gastro-intestinal symptoms - pain, nausea, vomiting</td>
<td>24%<sup>122</sup></td>
<td>33%<sup>115</sup></td>
<td>15.2%<sup>116</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2% raised liver enzymes.<sup>116</sup></td>
<td></td>
</tr>
<tr>
<td>Renal (increase in serum creatinine)</td>
<td>14%<sup>111</sup></td>
<td>NA</td>
<td>38%<sup>116</sup> Reduce dose by 10 mg/kg if serum creatinine levels rise above the age-appropriate upper limit for paediatric patients and > 33% above baseline at two consecutive visits for adults measurements.</td>
</tr>
<tr>
<td>Joint pain and stiffness</td>
<td>18 - 19%<sup>110,122</sup></td>
<td>28 - 37.5%<sup>110,75</sup></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If severe, consider temporary or permanent cessation of drug.</td>
<td></td>
</tr>
<tr>
<td>Reduced visual acuity and impaired visual field</td>
<td>Present if dose is high.<sup>51</sup></td>
<td>NA</td>
<td>< 1% lens opacities.</td>
</tr>
<tr>
<td>Sensorineural deafness</td>
<td>Present if dose is high.<sup>51,104</sup></td>
<td>NA</td>
<td>< 1% high frequency hearing losses.</td>
</tr>
</tbody>
</table>

NA= Not Available
8. HAEMOPOIETIC STEM CELL TRANSPLANTATION (HSCT)

Bone marrow transplantation from human leucocyte antigen (HLA) identical family donors is an established curative treatment option for children with thalassaemia.138 Level II-2

Three patient classes have been identified on the basis of the following risk factors, which have been found to have a significant negative influence on post-transplant outcome:
- Inadequate iron chelation therapy
- Presence of liver fibrosis
- Hepatomegaly

Patients in Class I have none of the above characteristics, patients in Class II have one or two, while patients in Class III exhibit all three characteristics.

Experience from the largest series of patients in Italy showed that in Class I patients, the probabilities of overall survival (OS) and disease-free survival (DFS) are 93\% and 91\% respectively, with a 2\% risk of rejection and an 8\% risk of transplant-related mortality. Class II patients have an 87\% probability of OS and an 83\% chance of DFS, with a 3\% risk of rejection and a 15\% risk of non-rejection mortality. Class III patients have a 79\% probability of OS and a 58\% chance of DFS, with a 28\% risk of rejection and a 19\% risk of non-rejection mortality.138,139-140 Level III (Refer to Figure 3)

Among adults aged >16 years old, the probability of surviving a bone marrow transplant procedure is 66\% with a 62\% probability of cure, a 35\% chance of transplant-related mortality and a 5\% chance of returning to the pre-transplant thalassaemia condition.139-140 Level III

Based on these outcomes,139,140 Level II-2 bone marrow transplantation (BMT) in thalassaemia should be considered for patients at an early age or before complications due to iron overload have developed.

However, a final decision must be based on an assessment of the relative advantages and disadvantages of HSCT and conventional therapy which requires the physician, patient and family to weigh the outcomes and risks of each option.
8.1 HLA-MATCHED SIBLING DONORS

HLA matched sibling BMT is the most established mode of cure for thalassaemia major.\(^5\) Level II-2, 139 Level III, 140-142 Level II-2

However, its applicability is limited by the availability of a HLA-matched sibling donor. There is a one-in-four chance that any sibling will be HLA identical, with the likelihood of a thalassaemia patient having an HLA identical sibling donor varying according to family size. However, there is also a one-in-four chance that a sibling of the index patient will have thalassaemia major too, thus reducing the chances of having a potential matched sibling donor. Siblings who are carriers can be potential donors.

Figure 3.
8.2 CORD BLOOD TRANSPLANTATION

Umbilical cord blood cells are a potential source of stem cells for transplantation. The results of using cord blood cells alone as a source of stem cells are variable, with slower engraftment and higher rejection risks, but there are increasing numbers of successful transplants reported.\(^\text{143,144 Level II-2; 145-147 Level III}\)

There are several possible advantages to this approach namely:

★ Stem cells can be obtained easily at birth
★ Cord blood allows a lesser HLA match compared to marrow donors for use in transplantation
★ It has been suggested that graft versus host disease (GVHD) may be less severe when stem cells are obtained from cord blood compared to marrow cells

Evidence suggests that sibling cord blood transplantation can be used to treat some patients with thalassaemia.\(^\text{143,144 Level II-3}\) Transplant outcome is good when it is performed on young recipients with early disease status and good HLA match.

Unrelated cord blood transplants have also proved feasible\(^\text{145-147 Level III}\) but such grafts are still regarded as having higher risks and being appropriate only under research protocol or clinical trials.

8.3 MATCHED UNRELATED DONOR TRANSPLANTATION

As most patients with thalassaemia do not have a suitable sibling donor, there is considerable interest in using unrelated but otherwise matched donors.\(^\text{148,149 Level II-2}\) Compared to matched sibling transplants, the complication rates of transplants using matched unrelated donors are high. It is hoped that with continued improvements in clinical care and HLA matching techniques, complication rates will be reduced.

This has been proven recently suggesting that if unrelated donors are from a closely related genetic background the outcome may be improved.\(^\text{149 Level II-2}\) Experience so far is still limited and it carries higher morbidity and mortality. However it may be feasible in experienced centres and the treatment needs to be individualised.
RECOMMENDATION

Matched sibling donor transplantation should be offered at the earliest age possible. (GRADE C)

Figure 4.
Referral Algorithm for Consideration of Bone Marrow Transplant
9. COMPLICATIONS & THEIR MANAGEMENT

9.1 ENDOCRINE COMPLICATION

9.1.1 Short Stature and Growth Failure

Growth failure in thalassaemia have been attributed to hypothyroidism, delayed sexual maturation, diabetes mellitus, zinc deficiency, low haemoglobin levels, bone disorders, DFO toxicity, IGF-1 deficiency and growth hormone deficiency (GHD). Folate deficiency, undernutrition and hypersplenism are other causes of poor growth. 51 Level III; 150 Level II-3

Growth failure is defined as:

★ Height less than 3rd percentile for age and gender
★ Significantly short for the family (10 cm or more below mid-parental height (MPH)) (Refer to Appendix 7 for calculation of MPH)
★ Slow growth rate observed over a period of 6 months to 1 year

Average growth rate at different phases of life:
- Prenatal: 1.2 - 1.5 cm/week
- Infancy: 23 - 28 cm/year
- Childhood: 5 - 6.5 cm/year
- Puberty: 8.3 cm/year (girls), 9.5 cm/year (boys)

★ Downward crossing of height percentiles on growth chart (such as from 50th percentile to 25th percentile after the age of 18 months)

Prevalence
★ Prevalence of short stature varies from 31 to 64%. 150-151 Level II-2
★ Short stature is more prevalent in those above the age of 10 years. 152 Level II-3

Investigations
Investigation of a child with thalassaemia who has stunted growth is generally similar to that of a child without it. 51 Level III A reliable stadiometer (ideally Harpenden) should be made available to measure the height accurately.
It is important to detect other causes of short stature in thalassaemia patients. Additional endocrine tests that can be done would include thyroid function tests, sex hormones, zinc, calcium, alkaline phosphatase and oral glucose tolerance test (OGTT). Other useful tests are IGF-1, IGFBP-3 and bone age assessment.51 Level III

For short children with suspected GHD, other tests that are normally done in the referral or tertiary centres are:

- GH stimulation tests. GHD should be confirmed by conducting two GH stimulation tests using two different pharmacologic agents.153 Level III

- Anterior pituitary function tests

Children with β thalassaemia major frequently have growth retardation in the presence of low serum IGF-1 and a normal GH response to pharmacological stimulation suggesting that they have GH insensitivity (GHIS).154 Level II-1

Management

Management of growth failure should include addressing other causes of short stature in thalassaemia patients, such as malnutrition, suboptimal transfusion, hypothyroidism, delayed puberty, diabetes mellitus, zinc deficiency, bone disorders and DFO toxicity.

After confirmation of GHD and the correction of other factors for growth failure, consider GH therapy:

1. Treatment with recombinant human growth hormone (rh-GH) for 1 - 2 years at a dose of 0.5 - 1.0 IU/kg/week will result in an increase in growth velocity from 2 - 3 cm/year to 6 - 7 cm/year. However, there is limited evidence that the final height may improve.155 Level II-1, 156 Level II-3

2. In a study among older patients, favourable outcome was noted in the first year of rh-GH treatment which did not persist during the second and third years because of increase in bone age.157 Level II-3

3. Recombinant human GH is a safe mode of treatment in thalassaemia children.155 Level II-1
RECOMMENDATION

Thalassaemia patients with short stature should be assessed and screened for growth hormone deficiency after excluding other common causes of short stature. (Grade C)

Growth hormone deficiency should be confirmed by conducting two GH stimulation tests using two different pharmacologic agents. (Grade C)

Growth hormone therapy if required should be tried for one year and assessed for response. (Grade C)

9.1.2 Delayed Puberty and Hypogonadism

Failure to progress normally through puberty is associated with failure of adequate bone mineralisation and achievement of peak bone mass in thalassaemia patients. The management of these patients should therefore be pro-active to anticipate problems and facilitate normal sexual maturation.158-159 Level II-2

Definition

★ Delayed puberty is the complete lack of pubertal development in girls by the age of 13 years and in boys by the age of 14 years.160-161 Level III

★ Hypogonadism is defined in boys as the absence of testicular enlargement (< 4 mls), and in girls as the absence of breast development (thelarche) by the age of 16 years.51 Level III

★ Arrested puberty is characterised by a lack of pubertal progression over one year or more. The testicular size remains 6 - 8 mls and breast size at Tanner stage 3. In such cases, the annual growth velocity is either markedly reduced or completely absent.51 Level III

Prevalence

Hypogonadism (delayed puberty and prepubertal GnRH response) was noted in 59% of patients who reached pubertal age. High serum ferritin level during puberty is a risk factor for hypogonadism.162 Level II-3
Investigations
Tanner staging should be determined every six months from the age of 10 years onwards.

Orchidometer (Prader) should be made available for the assessment of testicular volume.

Patients with delayed puberty require screening with thyroid function tests, LH, FSH, oestradiol or testosterone and bone age. Pelvic ultrasound should be done to assess ovarian and uterine size. If results are abnormal, perform gonadotropin releasing hormone (GnRH) stimulation test.51 Level III

Management
For the induction of puberty in thalassaemia patients diagnosed with probable hypogonadism, ethinyl oestradiol had been used in girls and testosterone depot in boys without adversely affecting the final height. 163 Level II -3

For girls with delayed puberty at 13 years of age:

★ It is important to induce puberty gradually over a duration of 2 - 3 years to allow adequate development of secondary sexual characteristics and feminisation before attainment of menarche.160 Level II

★ Therapy may begin with oral administration of ethinyl oestradiol (2.5 - 5.0 µg daily) or conjugated oestrogen preparation (0.3 mg every other day) for 6 months and stopped for reassessment (Tanner staging).

★ If spontaneous puberty does not occur within 6 months after stopping treatment, oral oestrogen is reintroduced in gradually increasing dosages (10, 15, 20 µg for ethinyl oestradiol or 0.3 mg daily, 0.625 mg daily for conjugated oestrogen) to full replacement doses (20 µg for ethinyl oestradiol and 0.625 mg for conjugated oestrogen preparation) within two to three years.160-161 Level III

★ Cyclical progesterone or medroxyprogesterone acetate (5 - 10 mg daily) is added for 12 days every month after full oestrogen replacement to ensure cyclical endometrial shedding and decrease the risk of endometrial dysplasia.160 Level III
For boys with delayed puberty at 14 years of age:
★ Low dose IM depot testosterone esters (25 mg) are given monthly for six months, and stopped for reassessment (Tanner staging).
★ If spontaneous puberty does not occur within six months after stopping treatment, IM depot testosterone esters can be reintroduced at a dose of 50 mg. Dose is gradually increased every six months to a maximum of 200 mg. Full replacement dose in adults is 200 mg every 2 - 3 weeks.
★ In boys with pubertal arrest, the treatment consists of testosterone esters which are administered as for delayed puberty and hypogonadism.

Though human chorionic gonadotrophin (hCG) has been used in thalassaemia patients with hypogonadism, the response rate is low.159 Level II-2

Patients with severe iron overload have potentially irreversible hypogonadism and do not respond to pulsatile GnRH therapy. Therefore, testosterone therapy should be the mainstay of treatment in thalassaemia patients with hypogonadism.164 Level II-2

RECOMMENDATION

All thalassaemia patients with delayed puberty should be treated in an appropriate sequential manner. *(Grade C)*

For induction of puberty, ethinyl oestradiol or conjugated oestrogen preparation can be used in girls and testosterone injection in boys. *(Grade C)*

9.1.3 Hypothyroidism

The majority of patients have primary thyroid dysfunction. Secondary hypothyroidism caused by iron damage to the pituitary gland is rare.

Incidence of primary hypothyroidism varies from 6.2 - 51.7%165-166 Level II-3 and increases with age (mean age 15.8 years).167 Level II-2 There is a strong association between high iron overload and decreased thyroid function.168 Level II-3

Signs and Symptoms

There are no obvious clinical signs and symptoms of hypothyroidism despite abnormal thyroid function.168-169 Level II -3
Investigations
★ Free T4 and TSH
★ Bone age

Management
Full L-thyroxine replacement dose is 100 µg/m²/day. Subsequent dosage should be titrated according to thyroid function.

RECOMMENDATION
The treatment for hypothyroidism is L-thyroxine. (Grade A)
Thalassaemia patients aged more than 10 years should be monitored annually for hypothyroidism. (Grade C)

9.1.4 Diabetes Mellitus

Diabetes mellitus (DM) is a chronic disease characterised by elevated blood glucose caused by abnormal insulin production or abnormal insulin action that leads to disordered carbohydrate, lipid and protein metabolism. ¹⁷⁰ Level III

Pathophysiology
★ It is believed to be due to damage of pancreatic β cells caused by iron overload. There is reduced insulin secretion in normoglycaemic β thalassaemia major patients. ¹⁷¹-¹⁷² Level II-3
★ The appearance of DM in thalassaemia patients may be due to a combination of insulin resistance and insulin deficiency caused by either exhaustion of β cells, iron deposition in islet cells or a combination of these factors. ¹⁷³ Level II-3
★ Overt DM in thalassaemia major patients is preceded by a long period of insulin resistance ¹⁷² Level II-3 and hyperinsulinaemia. ¹⁷³ Level II-3
★ The main risk factors associated with DM are poor compliance with DFO treatment, delayed age at start of chelation therapy, liver cirrhosis or severe fibrosis, ¹⁷⁴ Level II-3 and hepatitis C infection. ¹⁷⁵-¹⁷⁶ Level II-3
★ The risk factors associated with impaired glucose tolerance (IGT) are male, poor compliance with DFO therapy and LIC four times above the normal value. ¹⁷⁴ Level II-3
★ Liver disorders and positive family history seem to be additional predisposing factors. ¹⁷⁴,¹⁷⁷-¹⁷⁸ Level II-3
Prevalence

★ The prevalence of DM ranges from 10.4 - 19.5%. 172,175-176,179 Level II-3
★ The mean age at diagnosis is between 17 and 18 years. 165, 174-175, Level II-2
★ The prevalence of IGT is 8.5 - 14.6% and the mean age at diagnosis is 16.6 ± 4.9 years. 175-176 Level II-3
★ 31.1% of patients with diabetes present with diabetic ketoacidosis. 175 Level II-3

Investigations

★ The diagnosis of DM may be made using any one of the following criteria: 180 Level II
 ● Symptoms and a random plasma glucose of more than 11.1 mmol/L. Symptoms include polyuria, polydipsia, and unexplained weight loss.
 ● Fasting plasma glucose of > 7.0 mmol/L
 ● 2 hour post-prandial plasma glucose of > 11.1 mmol/L on an OGTT. (An OGTT requires the equivalent of 1.75 gm/kg to a maximum of 75 gm of anhydrous glucose dissolved in water)
★ The diagnosis of IGT is made when the 2 hour post-prandial glucose is between 7.8 - 11.1 mmol/L on an OGTT. 180 Level III

Management

★ The early and adequate use of iron chelation can prevent DM and major endocrinopathies. 175,181-182 Level II-2, 179 Level II-3
★ Both DM and IGT improved in a third of patients after intensive combined chelation treatment. 183 Level II-3
★ In thalassaemias with IGT, the condition may improve with a strict diabetic diet, weight reduction where applicable and intensive iron chelation. 51 Level III
★ Use of insulin:
 ● In thalassaemia patients with DM, insulin treatment is normally required but metabolic control may be difficult to achieve. 51,184 Level III
 ● Insulin requirement (0.15 - 1.72 U/kg) varies due to a wide variation in pancreatic β cell function as determined by C-peptide level. 184 Level III
★ The use of oral anti-diabetic agents in DM remains undetermined.
RECOMMENDATION

A 2 hour OGTT should be performed annually on thalassaemia patients ≥ 10 years old. (Grade C)

Thalassaemia patients with IGT should be managed by a strict diabetic diet, weight reduction where applicable and intensive iron chelation. (Grade C)

Thalassaemia patients with DM should be treated with insulin. (Grade C)

9.1.5 Osteoporosis/Osteopaenia

Low bone mass is present in a significant proportion of children with transfusion dependent thalassaemia despite hypertransfusion and optimal chelation.

The Bone Mineral Density (BMD) of thalassaemia children cluster around the normal curve until the age of 10 - 12 years, when there is a deviation away from it. The mean decline of BMD z score is -0.38 per year.

β thalassaemia trait is not a contributing factor for low bone mass.

Bone changes related to DFO toxicity should be suspected and investigated in children with bone or joint pain.

Definition
To date, there are insufficient data to formally define osteopaenia/osteoporosis in children and adolescents.

Osteopaenia is defined as mild decrease in bone mineral content, 1.1 to 2.4 SD below the mean for age and sex.

Osteoporosis is defined as a decrease in bone mineral content, 2.5 SD or more below the mean for age and sex, and resulting in weak bones and pathological fractures.
Management of Transfusion Dependent Thalassaemia

Prevalence
★ 16.1% of the β thalassaemia patients had normal bone mass (z score ≥ -1)
★ 22.6% had reduced bone mass (z score between -1 to -2)
★ 61.3% had low bone mass (z score ≤ -2)189 Level II-3
★ Vitamin D deficiency:
 ● 25-OH vitamin D concentrations are significantly lower in patients with thalassaemia major and iron overload compared to normal controls.190 Level II-3
 ● 30.9% of patients have 25-OH vitamin D3 levels below the normal range. These patients tend to have a lower BMD z-scores.158 Level II-2
★ Zinc deficiency:
 ● Zinc deficiency is associated with osteoporosis and with BMD z scores below -2 in 68.7% and 17.6% of patients at the lumbar and femoral regions respectively.
 ● 84.8% of patients aged 10 - 20 years have been reported to be zinc deficient while 44.7% have severely low levels.191 Level II-2

Investigations
★ Serum calcium, phosphate, ALP
★ 25-OH Vitamin D level
★ Parathyroid hormone
★ Serum zinc
★ 24 hour urinary calcium
★ Spinal radiograph (AP and lateral views)
★ MRI scan of the spine may be considered for patients with severe back pain52 Level II-2
★ Currently, Dual Energy X-ray Absorptiometry (DEXA) scan is the method of choice to assess BMD192 Level II-3
★ Quantitative computed tomography (QCT) could play a role in the future192 Level II-3
★ Quantitative ultrasound (QUS) of the heels is a non-invasive assessment of skeletal status. Though it may be used in monitoring effects of specific treatment, it cannot be used to substitute DEXA.193 Level III
Management

Adequate vitamin D and calcium intake according to recommended dietary allowances (RDA) should be ensured in all thalassaemia patients.194-195 Level III

Table 5. Recommended dietary intake of calcium and vitamin D

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Calcium (mg/day)</th>
<th>Vitamin D (IU/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 - 8</td>
<td>800</td>
<td>200</td>
</tr>
<tr>
<td>9 - 13</td>
<td>1300</td>
<td>200</td>
</tr>
<tr>
<td>14 - 18</td>
<td>1300</td>
<td>200</td>
</tr>
<tr>
<td>19 - 30</td>
<td>1000</td>
<td>200</td>
</tr>
<tr>
<td>31 - 50</td>
<td>1000</td>
<td>200</td>
</tr>
<tr>
<td>51 - 70</td>
<td>1200</td>
<td>400</td>
</tr>
<tr>
<td>>70</td>
<td>1200</td>
<td>600</td>
</tr>
</tbody>
</table>

(Adapted from Institute of Medicine, Food and Nutrition Board (1997).)

- Non-pharmacologic interventions which include regular weight-bearing exercises, avoidance of smoking and excessive alcohol consumption should be advised to all patients.52 Level II-1

- In vitamin D deficiencies, oral vitamin D of 1000 - 1500 IU and calcium supplementation of 500 - 1000 mg should be given daily.51 Level III

- Zinc supplementation should be offered to patients with zinc deficiency or suspected deficiency. Recommended daily allowance is 10 - 15 µg for children older than 10 years.191 Level III

- In osteopaenic patients, non-pharmacologic interventions should be optimised.

- In osteoporotic patients, besides optimising non-pharmacologic interventions, 500 mg/day of calcium and 400 IU/day of vitamin D suppletions are required.197 Level III

- Bisphosphonates may be considered in older patients with osteoporosis and not responding to the above measures.

- Other contributory causes of low bone mass such as hypogonadism and other endocrinopathies should be promptly and adequately managed.52 Level II-1
RECOMMENDATION

Adequate dietary intake of calcium and vitamin D should be ensured. (**Grade C**)

Regular weight-bearing exercises should be encouraged with avoidance of smoking and excessive alcohol consumption. (**Grade C**)

Vitamin D, calcium and zinc status of thalassaemia patients should be evaluated regularly and annually from 10 years old onwards. (**Grade C**)

Annual bone density studies should be considered in thalassaemia patients more than 10 years of age. (**Grade C**)

9.1.6 Hypoparathyroidism

Incidence of hypoparathyroidism varies from 4.5 - 20%. The age of diagnosis range from 11 to 24 years (mean between 13 and 18 years).

Signs and Symptoms

Majority of thalassaemia patients with hypoparathyroidism have no clinical symptoms of hypocalcaemia. Therefore annual screening is suggested from age of 10 years onwards.

Hypoparathyroidism tends to be accompanied with other endocrinopathies.

Investigations

Screening for hypoparathyroidism includes:

- serum calcium
- serum phosphate
- serum magnesium
- serum alkaline phosphatase

In patients with low serum calcium and high phosphate level, proceed with serum parathyroid level.

Management

1. Calcitriol 0.25 - 1.0 µg once to twice daily.
2. In patients with persistent high phosphate levels, phosphate binders (such as calcium carbonate) may be considered.
3. Calcium supplements may be offered to patients with poor dietary intake.
RECOMMENDATION

Thalassaemia patients older than 10 years of age, especially those who have other endocrinopathies need to be monitored annually for hypoparathyroidism. (Grade C)

Treatment of hypoparathyroidism consists of calcitriol with or without calcium carbonate/lactate. (Grade C)

9.1.7 Hypoadrenalism

Hypoadrenalism may be under-diagnosed and can potentially cause mortality during acute illnesses. Prevalence of hypoadrenalism varies widely from 0 - 45% due to different patient characteristics and different diagnostic tests used. The mean age of patients detected to have impaired adrenal function is 13.5 ± 3.9 years. Thus there is a need to have an annual estimation of basal cortisol level in patients who are more than 10 years old especially those with wasting.

Signs and Symptoms
Patients are usually asymptomatic.

Investigations
- Baseline cortisol
 - Morning baseline cortisol level (8 - 9 AM) can be used to detect subtle adrenal insufficiency.
 - In view of constant stress experienced by patients with thalassaemia major, a higher cut off point (> 400 nmol/L) should be used.
- ACTH stimulation test should be done in patients with abnormal baseline cortisol level. A peak cortisol level of < 500 nmol/L with stimulation is abnormal.

Management
During stressful conditions, patients with adrenal insufficiency should be promptly given stress dose of hydrocortisone as a life saving treatment.

RECOMMENDATION
Thalassaemia patients more than 10 years of age, especially those with wasting and other endocrinopathies should be monitored annually for hypoadrenalism. (Grade C)
9.2 CARDIAC COMPLICATION

Cardiac complication due to iron overload is a major cause of mortality (71%) and morbidity in patients with transfusion dependent thalassaemia.101,206,207 Level II-2

Patients with serum ferritin > 2,500 µg/L have a higher risk of developing cardiac complications and death.100,208 However, SF is not a sensitive predictor of cardiac iron overload and cardiomyopathy, and cardiac deaths have been reported with low ferritin levels.89,209 Level II-3

The onset of cardiac iron overload can be as early as 10 years old although the risk is usually higher in the late teens and twenties.210 Level II-3

Standard dose s/c desferrioxamine infusion may not be sufficient to prevent cardiac iron overload in a significant proportion of thalassaemia major cases (6.9 - 65%), even amongst some compliant patients.111,209,211 Level II-3

Signs and Symptoms

- Usually asymptomatic until late stage
- Can present as heart failure, arrhythmias, and sudden death
- Unlike other cardiomyopathies, cardiac failure due to iron overload is potentially reversible with intensification of chelation therapy

Investigations

- 12 lead ECG and Holter monitoring
 - Useful to investigate specific symptoms such as palpitations, shortness of breath and syncope but not useful for screening of those at risk
 - Non-specific ECG changes such as depolarization of T waves are common but the clinical significance is uncertain
Echocardiogram
- Left ventricular ejection fraction (LVEF) values are significantly higher in thalassaemia patients and LV function is usually preserved until advanced stage. LVEF < 56% indicates impaired myocardial function and should prompt for further evaluation of cardiac iron overload by MRI T2* where possible and intensification of chelation therapy.\(^{98}\) Level II-3
- Tissue Doppler echo may detect wall motion abnormalities as an early sign of cardiac disease.\(^{213}\) Level II-3

MRI T2*
- Currently the best available method for early detection of cardiac siderosis.
- T2* level < 20 ms indicates presence of cardiac iron overload.
- T2* level < 10 ms indicates severe cardiac iron overload. Of patients with heart failure, 89% have T2* < 10 ms.\(^{209}\)
- MRI T2* should be done from age 10 onwards where possible and should be repeated every 2 years if normal, yearly if the value is between 10 - 20 ms and 6 monthly if it is <10 ms.\(^{98}\) Level II-3

Management

1. Thalassaemia patients with myocardial siderosis may be asymptomatic. Patients with cardiac failure or arrhythmia should be co-managed with the cardiologist. Other contributing factors such as hypothyroidism, acute infections and pulmonary hypertension should also be managed appropriately.

2. Asymptomatic cardiac siderosis
 a. Maximise current monotherapy
 - Desferrioxamine 40 - 60 mg/kg/day to increase frequency from five to seven days and duration from 8 to 24 hours\(^{214}\) Level II-3
 - Deferiprone at higher doses of 90 - 100 mg/kg/day\(^{110}\) Level I
 b. Combination therapy with s/c desferrioxamine 40 - 50 mg/kg/day at least five times a week and oral deferiprone (75 mg/kg/day).\(^{122}\) Level I

 Preliminary data on deferasirox suggests that a higher dose of 40 mg/kg/day may be required to reduce cardiac iron.
3. **Symptomatic cardiac siderosis**
 - Continuous i/v desferrioxamine 50 - 60 mg/kg/day.\(^{106,215,216}\) Level II-3
 - Combination therapy with deferiprone 75 mg/kg/day and s/c desferrioxamine 40 - 50 mg/kg/day at least five times per week.\(^{217}\) Level II-2, \(^{218}\) Level III
 - There is no data on the ability of deferiprone monotherapy to reverse heart failure.

Monitoring
- Full clinical examination of the cardiovascular system at least six monthly
- Echocardiogram annually from age of 10 years

RECOMMENDATION

Annual monitoring of cardiovascular system for thalassaemia patients from age 10 onwards would include ECG, echocardiogram and where possible MRI T2*. (Grade C)

For asymptomatic thalassaemia patients with mild to moderate cardiac siderosis (T2* 10 - 20 ms) and normal cardiac function, iron chelation monotherapy should be intensified or switched to combination therapy. (Grade B)

If MRI T2* assessment is not possible, then thalassaemia patients with poor chelation history and high risk of cardiac iron overload such as serum ferritin > 2,500 µg/L or poor compliance should have intensive chelation monotherapy or switched to combination therapy. (Grade C)

For thalassaemia patients with severe cardiac iron overload or symptomatic cardiac disease, continuous i/v DFO is the best treatment option. Alternatively, combination therapy can be considered. (Grade C)
9.3 INFECTION

9.3.1 Hepatitis B

The prevalence of HBsAg positivity in multiply transfused thalassaemia patients varies worldwide (< 1% to >20%).51 Level III In Malaysia, the reported figure was low (2.4%) but not negligible.219 Level III Hepatitis B infection remains a significant cause of chronic liver disease and hepatocellular carcinoma in patients with thalassaemia especially in the developing countries. Routine screening of hepatitis B is recommended and should also include anti-HBs level if resources permit. Full hepatitis B vaccination needs to be given to unvaccinated patients and those unsure of vaccination status. In patients who had completed prior vaccination with anti-HBs level < 10 mIU/ml, a booster dose needs to be given. If anti-HBs level one month post - booster vaccination is still low, consider 3-dose re-vaccination.220 Level III

Investigations
In patients found to be HBsAg positive, the following tests should be done: LFT, HBeAg, anti-HBe and HBV-DNA.

All thalassaemia patients requiring hepatitis B treatment should be co-managed by gastroenterologist. Furthermore, the blood bank needs to be informed for donor tracing in transfusion mediated infections.

| Diagnostic and treatment criteria for chronic hepatitis B infection are as follows: |
| 1. HBsAg positivity > 6 months AND |
| 2. Serum HBV DNA > 20,000 IU/ml (10^5 copies / ml) in HBeAg positive cases, serum HBV DNA > 2,000 IU / ml (10^4 copies/ml) in HBeAg negative cases AND |
| 3. Persistent or intermittent elevation in ALT/AST levels, typically more than twice of Upper Limit Normal or significant liver disease on liver biopsy |
Management
The primary goal of treatment for chronic hepatitis B are long-term suppression of HBV-DNA viral load to low and preferably undetectable level and HBeAg seroconversion in HBeAg positive subjects with the aim to reduce progression to cirrhosis, liver failure and hepatocellular carcinoma.

Treatment should be started as early as possible in cases of impending or overt hepatic decompensation (i.e. raised bilirubin unrelated to thalassaemia, prolonged PT or presence of ascites). Otherwise, 3 - 6 months observation is recommended. Level III

Patients can be treated with:

1. Interferon α (IFN α) or Pegylated IFN α
 For conventional IFN α, the recommended duration of treatment is 4 - 6 months for HBeAg positive patients and at least a year for HBeAg negative patients. For Peg-IFN, the recommended duration is at least six months for HBeAg positive patients and 12 months for HBeAg negative patients. Level III or

2. Lamivudine
 Lamivudine 100 mg daily is especially recommended if there is a concern regarding hepatic decompensation. Level III

 Anti-viral drug resistance can occur and may be recognised by viral breakthrough which is defined as 1 log increase from nadir, ALT flares and liver decompensation. When this occurs, addition of a second anti-viral agent (adefovir/tenofovir) which does not have cross resistance should be initiated. Level III

 In HBeAg positive patients, treatment can be stopped when HBeAg seroconversion with undetectable HBV-DNA has been documented on two separate occasions at least six months apart unless there is evidence of decompensated liver disease/liver cirrhosis. In HBeAg negative patients, treatment discontinuation depends on individual cases and should be decided by the gastroenterologist. Level III
Monitoring
During therapy,

★ HBeAg and HBV-DNA should be monitored every three months

★ Monitor renal function if adefovir is used221 Level III

At the end of therapy,

★ Monitor ALT and HBV-DNA monthly for the first three months to detect early relapse, then every three months (for cirrhotic patients and those who remain HBeAg/HBV-DNA positive) to six months (for responders)220 Level III

For non-responders, further monitoring of HBV markers is required to recognise delayed response and plan retreatment when indicated.221 Level III

In chronic hepatitis B and hepatitis C patients, hepatocellular carcinoma surveillance and checking for and vaccination against Hepatitis A virus should be done.221 Level III

RECOMMENDATION

Monitoring for hepatitis B infection using HBsAg needs to be done six monthly. (Grade C)

Treatment should be considered for cases:

- with HBsAg positivity > six months and serum HBV DNA > 20,000 IU/ml (10^5 copies/ml) in HBeAg positive cases
- with HBsAg positivity > six months and serum HBV DNA > 2,000 IU/ml (10^4 copies/ml) in HBeAg negative cases (Grade C)

9.3.2 Hepatitis C

The seroprevalence of hepatitis C in transfusion dependent thalassaemia patients in Malaysia ranges from 13.9% to 22.4%222,223 Level III

Both HCV infection and iron overload are independent risk factors for development of liver fibrosis and cirrhosis and may act synergistically to increase the risks of cirrhosis and hepatocellular carcinoma (HCC)224,225 Level III

Treatment of hepatitis C in thalassaemia is aimed at achieving sustained viral clearance, preventing liver damage and reducing the risk of liver cirrhosis and HCC. It should be managed in close collaboration with the gastroenterologist.
Investigations
★ Anti-HCV antibody (ELISA)
 ● This is indicative of exposure to the virus but does not differentiate whether the infection is acute, chronic or resolved

★ HCV-RNA (PCR)
 ● Confirmation of viraemia
 ● Monitoring response to antiviral therapy
 ● Viral load is a prognostic indicator of treatment outcome

★ HCV genotype
 ● Determines the duration of antiviral therapy and the likelihood of response. In general, genotype non-1 has a better response rate compared to genotype 1

★ Liver biopsy
 ● In thalassaemia patients with liver siderosis, it is useful in assessing severity of liver damage, provides information on prognosis and adds information on response to treatment

Diagnostic and treatment criteria for chronic hepatitis C infection are as follows:

1. Persistent anti-HCV positivity > six months
 AND

2. Serum HCV RNA positivity (regardless of viral titre)
 AND

3. Significant liver disease on liver biopsy
Management

1. Both conventional interferon (IFN) and peg-IFN with or without ribavirin can be used to treat patients with chronic hepatitis C infection for 24 - 48 weeks depending on HCV genotype (Genotype 1 generally needs a longer duration of treatment). However, sustained viral response (SVR) might be considerably reduced without the addition of ribavirin in genotype 1, cirrhosis or high viral load. 226-228 Level III, 229 Level I

2. There is an increase in transfusion requirement by 30 - 40% with the combined antiviral therapy due to ribavirin-induced haemolysis.

3. Patients with compensated cirrhosis should also be considered for treatment. The reversibility of early cirrhosis in patients with thalassaemia has been reported following the treatment of iron overload and viral hepatitis. 230 Level II-3

4. Patients on deferiprone and interferon therapy should be closely monitored as both agents can cause neutropaenia. Apart from FBC, LFT and thyroid function should also be monitored while on interferon therapy. Mood changes such as depression can occur.

RECOMMENDATION

Monitoring of hepatitis C infection should be done six monthly. (Grade C)

The preferred treatment option for hepatitis C in thalassaemia is combination therapy (either conventional or PEG-IFN) with ribavirin. (Grade C)

9.3.3 HIV Infection

Transfusion acquired HIV infection, though very rare, remains a potential risk in multiply transfused thalassaemia patients. HIV serology therefore should be carried out six monthly in these patients. Liaison with microbiologist for urgent confirmation of preliminary positive ‘anti-HIV Antibody’ test is required. Confirmed HIV positive cases should be referred urgently to Infectious Disease Physician for counselling and management. Blood bank needs to be contacted for donor tracing.
9.3.4 Bacterial Infections in Transfusion Dependent Thalassaemia

Apart from heart failure, infection is the main cause of death in transfusion dependent thalassaemia patients. All transfusion dependent thalassaemia patients need to be educated to seek early medical treatment when fever develops. Risk factors for severe infection include post-splenectomy, diabetes231 Level II-3, previous history of melioidosis232 and iron overload (especially if SF \geq 5000 μg/L).233 Level II-3

Management

- Patients who appear ill or toxic with hypotension, tachycardia, tachypnoea or hypoxia (O_2 saturation $< 96\%$ on air) need to be admitted urgently.
- Patients with fever $> 38^\circ C$ and chills, vomiting, abdominal or localised pain or swelling to suggest abscess also need to be admitted for prompt treatment and investigations.
- Blood cultures need to be done and empirical antibiotics started immediately.
- For ill patients, especially if post-splenectomy; first line antibiotics regime should include broad spectrum anti-Klebsiella and anti-Pseudomonal agents such as third generation cephalosporins51 Level II-2 with or without aminoglycosides.52 Level III
- Antibiotic choice depends on local pathogens susceptibility and endemicity such as area where melioidosis is endemic in Sabah, ceftazidime (150 mg/kg in three divided doses for patients < 40 kg body weight and 2 g TDS for patients ≥ 40 kg body weight) should be the first line pending blood culture results.232 Level II-2
- Ultrasound or CT scan should be carried out promptly in cases suspected to have abscess formation. Drainage of abscesses should be carried out early.
- Febrile patients on DFO should stop its use until the cause of the fever has been determined and treated.
- Febrile patients on DFP should stop its use and have neutropaenia excluded urgently.

RECOMMENDATION

In transfusion dependent thalassaemia with sepsis, especially post-splenectomised, first-line antibiotic regimes should include broad spectrum anti-Klebsiella and anti-Pseudomonal agents. (Grade C)
10. NUTRITION & SUPPLEMENTS

Generally, patients with thalassaemia do not have specific dietary requirements. However there is evidence showing that thalassaemia children have compromised nutritional status. The children were significantly shorter ($p < 0.05$) and had smaller mid-arm circumference (MAC) and triceps skin fold thickness (SFT) as compared to the control group. Children with thalassaemia major who are on regular transfusion and chelation therapy have significantly lower serum zinc, selenium, copper, retinol and α-tocopherol levels.

Growth stunting in thalassaemia children can be minimised with good nutritional support from an early age (1 - 3 years old). High-calorie diets significantly increase IGF-1 production and lead to growth improvement. The BMI, MAC and triceps SFT also increase significantly.

Vitamin E

Thalassaemia children are in a state of enhanced oxidative stress and anti-oxidant deficiency even without iron overload. They have significantly lower superoxide dismutase (SOD) enzymes which are the first line of defence against oxidant stress. Low levels of SOD activity with high free oxygen radicals lead to reduced levels of vitamin E.

Vitamin E supplementation helps to reduce platelet hyperactivity, and reduce oxidative stress. Vitamin E protects erythrocytes in β thalassaemia patients from early lysis due to oxidative stress and significantly improves their Hb level. Vitamin E therapy (10 mg/kg) for four weeks, significantly improves Hb levels and plasma ascorbate, and restores enzymatic antioxidants of erythrocytes to near normal values.

Vitamin C

Vitamin C helps to mobilise iron from the intracellular stores and effectively increase the efficacy of chelation with desferrioxamine. It is recommended to be given (not more than 2 - 3 mg/kg /day) as supplements during the time of desferrioxamine infusion to increase iron excretion.
Folic Acid
Thalassaemia patients may have folate deficiency\(^2^{39}\) Level I, in particular those not on blood transfusion or on low transfusion regime.\(^51\) Level III Daily folic acid supplementation is recommended especially for those planning for pregnancy.\(^52\) Level III

Iron Rich Food
Patients with transfusion dependent thalassaemia should take less foods rich in iron.

| Table 6. Selected food items with iron content per 100 gm edible portion |
|-------------------|----------------------------------|
| **Food item** | **Iron contents (mg)/100 gm edible portion** |
| Liver | 9.0 |
| Chicken | 2.8 |
| Beef | 2.7 |
| Pork | 1.7 |
| Lamb | 2.3 |
| Egg yolk | 7.9 (0.9 mg per egg yolk) |
| Oysters | 6.1 |
| Clams | 6.7 |
| Tuna | 1.6 |
| Shrimp | 1.5 |
| Soy beans | 1.8 (tempeh) 0.2 (soya bean milk, packet of 250 ml) |
| Tofu | 2.2 |
| Kale | 2.0 |
| Mustard leaves | 1.0 |
| Spinach | 5.0 |
| Broccoli | 0.7 |
| Asparagus | 0.6 |

(Source: Nutrient Composition of Malaysian Food, 1997)

RECOMMENDATION
All thalassaemia patients should be given good nutritional support at an early age to minimise growth impairment. (Grade B)
Vitamin E is useful for thalassaemia patients. (Grade B)
Vitamin C supplementation to be given to thalassaemia patients during desferrioxamine therapy. (Grade C)
Folic acid supplementation is useful for thalassaemia patients on low transfusion regime and those planning for pregnancy. (Grade C)
REFERENCES

75. Tafer A, Sheikh-Taha M, Koussa S. Comparison between deferoxamine and deferiprone (L1) in iron-loaded thalassaemia patients. Eur J Haematol 2006;76:30-34.

Management of Transfusion Dependent Thalassaemia

229. Inati A, Taher A. Efficacy and tolerability of peginterferon alpha-2a with or without ribavirin in thalassaemia major patients with chronic hepatitis C virus infection. BJH 2005;130:644-646.

APPENDIX 1

SEARCH STRATEGY

The following free text terms or MeSH terms were used either singly or in combination:

Thalassemia[MeSH] OR Thalassaemia OR haemoglobinopathies OR Thalassaemia major; Physical examinations OR “clinical features” OR diagnoses OR diagnosis; “laboratory diagnosis” OR “laboratory investigations”; Thalassaemia intermedia AND “laboratory investigations”; Thalassaemia AND serum ferritin measurement; iron overload OR total body iron AND Thalassemia; Thalassaemia AND T2*; Thalassemia AND T2*; Thalassemia AND T2* AND “iron overload”; R2* AND thalassemia; MRI AND iron overload; Thalassemia AND MRI; Thalassaemia AND “hepatic iron”; Thalassemia AND “chelation therapy”; Thalassemia AND survival AND “chelation therapy”; Thalassemia AND “iron chelation” AND cost-effective; Thalassemia AND “iron chelation” AND compliance; Thalassemia AND “chelation therapy” AND “quality of life”; Thalassemia AND “Vit C”; Thalassemia AND Supplements; Thalassaemia AND Calcium; Thalassemia AND Nutrition; Thalassaemia AND Vitamins; Thalassaemia AND supplements; Thalassaemia AND Screen*; Thalassaemia AND Cascade; Thalassaemia AND extended famil*; Thalassaemia AND Counsel*; Genetic counselling AND ideal; Thalassaemia AND “blood transfusion”; Thalassaemia AND transfusion; “Thalassaemia” [Mesh] AND “deferoxamine” [Mesh] OR ‘deferiprone” [Substance Name] OR “deferasirox” [Substance Name” AND (“last 10 years” [Pdat] AND (Humans[Mesh])); “Thalassaemia” [Mesh] AND “deferoxamine” [Mesh] OR ‘deferiprone” [Substance Name] OR “deferasirox” [Substance Name”; Thalassemia[Mesh] AND “blood transfusion”; Thalassaemia AND hypertransfusion; Thalassemia AND transfusion; Transfusion dependent thalassemia AND pre-transfusion testing; Multiply transfused AND pre-transfusion screening; Transfusion dependent thalassemia OR red cell phenotyping OR alloimmunization;
Pre-storage leucodepletion OR transfusion reaction; Transfusion
dependent thalassemia OR leucodepleted blood OR reduced transfusion
reaction; Multiply transfused AND fresh blood AND increased
oxygen capacity; Thalassaemia AND splenectomy; Hypersplenism
AND definition; Thromboembolic event AND thalassaemia;
Post-splenectomy AND platelet count; Thrombocytosis AND
aspirin; Aspirin AND splenectomy; Thalass* AND coagulopathy;
Post-splenectomy AND OPSI; Post-splenectomy AND vaccines;
Desferrioxamine AND cardiac; Reversal of heart failure AND desferal
AND thalassaemia; Deferiprone and cardiac; Combined therapy
with deferrioxamine and deferiprone; Reversal of heart failure AND
combined therapy AND thalassaemia; Deferasirox and cardiac; Hepatitis
C treatment and thalassaemia; Thalassaemia AND DEXA AND
osteoporosis; “Osteopenia OR Osteoporosis” AND Thalassaemia; B
Thalassaemia AND Growth hormone; Thal intermediate AND Growth
hormone; Thalassaemia AND Short stature; Thalassaemia AND
hypothyroidism and treatment; Thalassaemia AND hypotparathyroidism
treatment; Thalassaemia AND hypoadrenalism AND treatment;
Thalassaemia AND puberty; Treatment AND puberty AND
Thalassaemia Intermediate; Thalassaemia AND puberty AND sex
steroid; Thalassaemia AND puberty AND testosterone; Thalassaemia
AND puberty AND estrogen; Thalassaemia AND Combine therapy
AND diabetes mellitus; Thalassaemia AND desferrioxamine AND
diabetes mellitus; Thalassaemia AND deferiprone AND diabetes
mellitus; Thalassaemia AND insulin AND DM; Thalassaemia AND
Oral phosphatisec AND DM; Thalassaemia AND metformin AND DM;
Thalass* AND Transplant*; thalassemia AND transplant*; infection and
thalassaemia; Postsplenectomy Infection AND Thalassaemia; Treatment
of Post-splenectomy Infection; Hepatitis B AND booster AND
Thalassemia; Hepatitis B treatment AND Thalassemia.
CLINICAL QUESTIONS

1. What is the epidemiological data for thalassaemia in Malaysia?

2. How is thalassaemia diagnosed? (β thalassaemia & thalassaemia intermedia)
 - Clinical diagnosis
 - Laboratory diagnosis
 - How is thalassaemia diagnosed in the laboratory?
 - How is β thalassaemia major diagnosed in the laboratory?
 - How is β thalassaemia intermedia diagnosed in the laboratory?

3. How should affected individuals, parents of affected individuals and extended family members be counselled?

4. What is the role of cascade screening in thalassaemia management?

5. Blood transfusion therapy
 - What are the indications for blood transfusion therapy?
 - What are the pre-transfusion evaluations?
 - Does RBC genotyping reduce the risk of alloimmunisation?
 - Is the use of leucocyte reduced packed cells effective in reducing transfusion reactions?
 - Is the use of pre-storage filtration better than bedside filters?
 - What is the transfusion regimen that is effective in reducing extramedullary haematopoiesis and iron load?
 - During blood transfusion, what are the common adverse reactions and their management?
 - How should a thalassaemia patient be monitored during transfusion?
6. **Splenectomy**
 - What are the indications for splenectomy in thalassaemia patients?
 - In post-splenectomy patients, will the use of vaccines pre-splenectomy and antibiotics post-splenectomy reduce the risk of OPSI?
 - In post-splenectomy patients, does aspirin reduce the risk of thrombosis?

7. **Iron burden**
 - Is serum ferritin a reliable measurement of iron overload?
 - What is the best measurement/indicator of total body iron?
 - What is the best measurement/indicator of cardiac iron overload?
 - What is the best measurement/indicator of liver iron overload?

8. **Iron chelation therapy**
 - Does iron chelation therapy affect survival or mortality in thalassaemia major?
 - What are the indications for use and the side effects for current iron chelators?
 - When should iron chelation therapy be started?
 - In liver iron overload, what is the best method of iron chelation?
 - Does the choice of iron chelators affect the quality of life/compliance in patients with thalassaemia major?

9. **What is the role of nutrition and supplements in thalassaemia patients?**

10. **What is the role of matched sibling haematopoietic stem cell transplantation?**

11. **What is the role of alternative donors and stem cell sources of stem cell transplantation?**
12. How should infections be managed?
 - How to manage thalassaemia patients presenting with acute febrile illness?
 - How to manage hepatitis B and C infections in thalassaemia patients?

13. Evaluation and management of cardiac complications
 - What are the major cardiac complications?
 - What are the risk factors for developing cardiac complications?
 - What are the modalities for monitoring cardiac complications and recommendations on frequency of monitoring?
 - Comparison of various iron chelators either as monotherapy or combination therapy
 - What is the efficacy of parenteral desferrioxamine in reducing myocardial iron and improving cardiac function?
 - Is deferiprone better than desferrioxamine in reducing myocardial iron and improving cardiac function?
 - Is combination therapy better than desferrioxamine alone in reducing myocardial iron and improving cardiac function?
 - Is combination therapy better than deferiprone alone in reducing myocardial iron and improving cardiac function?
 - What is the efficacy of deferasirox in reducing myocardial iron and improving cardiac function?

14. How should endocrine complications diagnosed and managed in thalassaemia patients with regards to
 - Short stature
 - Delayed puberty
 - Diabetes mellitus
 - Hypothyroidism
 - Hypoparathyroidism
 - Hypoadrenalism
 - Osteoporosis/osteopaenia
APPENDIX 3

GENETICS RISKS IN THALASSAEMIA

A. β THALASSAEMIA RECURRENCE RISK

1. Patients with β thalassaemia major:

His/her spouse should check their carrier status.

- If the spouse is not a carrier, all of their offsprings will be asymptomatic carriers.
- If the spouse is also a carrier, half of their offsprings will have thalassaemia major, half will be carriers.
- If the spouse is also affected with thalassaemia major, all of their offsprings will have thalassaemia major.

2. Parents of a patient with β thalassaemia major:

As both parents are likely to be carriers themselves, the recurrence risk for another affected child in each of their future pregnancies will be one in four or 25%.

3. Carrier of β thalassaemia:

His/her spouse should check their carrier status.

- If the spouse is not a carrier, none of their offspring will have thalassaemia major but half of their offsprings will be asymptomatic carriers.
- If the spouse is also a carrier, there is one in four chance of having an affected (thalassaemia major) child in each pregnancy. Clinically unaffected children have 2/3 chance of being carriers.
- If the spouse is affected with thalassaemia major, half of their offspring will have thalassaemia major and half will be carriers.
B. α THALASSAEMIA RECURRENCE RISK

<table>
<thead>
<tr>
<th>Parents</th>
<th>Hb H disease</th>
<th>α⁰ trait</th>
<th>α⁺ trait</th>
<th>non α carrier</th>
</tr>
</thead>
</table>
| Hb H disease | • 50% Hb H disease
• 25% αthal. major
• 25% α⁺ homozygote | • 25% α thal. major
• 25% Hb H disease
• 25% α⁰ trait
• 25% α⁺ trait | • 25% Hb H disease
• 25% α⁰ trait
• 25% α⁺ trait
• 25% α⁺ homozygote | • 50% α⁰ trait
• 50% α⁺ trait |
| α⁰ trait | • 25% α thal. major
• 25% Hb H disease
• 25% α⁰ trait
• 25% α⁺ trait | • 50% α⁰ trait
• 25% α thal. major
• 25% Hb H disease
• 25% α⁺ trait
• 25% normal | • 25% α thal. major
• 25% Hb H disease
• 25% α⁰ trait
• 25% α⁺ trait | • 25% α⁰ trait
• 25% normal |
| α⁺ trait | • 25% Hb H disease
• 25% α⁰ trait
• 25% α⁺ trait
• 25% α⁺ homozygote | • 25% α thal. major
• 25% Hb H disease
• 25% α⁰ trait
• 25% α⁺ trait
• 25% normal | • 50% α⁺ trait
• 50% normal |
| non α carrier | • 50% α⁰ trait
• 50% α⁺ trait
• 50% normal | • 50% α⁰ trait
• 50% α⁺ trait
• 50% normal | • 50% α⁺ trait
• 50% normal | • 100% normal |

Legend: thal. = thalassaemia; α⁺ = α plus; α⁰ = α zero

Clinical significance of:
1. α thalassaemia major: Hydrops foetalis
2. Hb H disease: moderate anaemia and usually not transfusion dependent
3. α⁰ trait: asymptomatic
4. α⁺ trait: asymptomatic
5. α⁺ homozygote: asymptomatic
C. REPRODUCTIVE RISK OF Hb E, α & β THALASSAEMIA CARRIERS

<table>
<thead>
<tr>
<th>Parents</th>
<th>Hb E trait</th>
<th>α₀ trait</th>
<th>α⁺ trait</th>
<th>β trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb E trait</td>
<td>• 50% Hb E trait</td>
<td>• 25% Hb E trait/α₀ trait</td>
<td>• 25% Hb E trait/α⁺ trait</td>
<td>• 25% Hb E trait/β thal.</td>
</tr>
<tr>
<td></td>
<td>• 25% Hb E homozygote</td>
<td>• 25% α⁺ trait</td>
<td>• 25% α⁺ trait</td>
<td>• 25% Hb E trait</td>
</tr>
<tr>
<td></td>
<td>• 25% normal</td>
<td>• 25% Hb E trait</td>
<td>• 25% Hb E trait</td>
<td>• 25% β trait</td>
</tr>
<tr>
<td>α₀ trait</td>
<td>• 25% Hb E trait/α₀ trait</td>
<td>• 50% α⁺ trait</td>
<td>• 25% α⁺ thal. major</td>
<td>• 25% α⁺ trait/β trait</td>
</tr>
<tr>
<td></td>
<td>• 25% α⁺ trait</td>
<td>• 25% α⁺ thal. major</td>
<td>• 25% Hb H disease</td>
<td>• 25% α⁺ trait</td>
</tr>
<tr>
<td></td>
<td>• 25% Hb E trait</td>
<td>• 25% α⁺ thal. major</td>
<td>• 25% α⁺ trait</td>
<td>• 25% β trait</td>
</tr>
<tr>
<td></td>
<td>• 25% normal</td>
<td>• 25% α⁺ thal. major</td>
<td>• 25% α⁺ trait</td>
<td>• 25% normal</td>
</tr>
<tr>
<td>α⁺ trait</td>
<td>• 25% Hb E trait/α⁺ trait</td>
<td>• 25% α⁺ thal. major</td>
<td>• 50% α⁺ trait</td>
<td>• 25% α⁺ trait/β trait</td>
</tr>
<tr>
<td></td>
<td>• 25% α⁺ trait</td>
<td>• 25% α⁺ thal. major</td>
<td>• 25% α⁺ homoyzgote</td>
<td>• 25% α⁺ trait</td>
</tr>
<tr>
<td></td>
<td>• 25% Hb E trait</td>
<td>• 25% α⁺ thal. major</td>
<td>• 25% α⁺ trait</td>
<td>• 25% β trait</td>
</tr>
<tr>
<td></td>
<td>• 25% normal</td>
<td>• 25% α⁺ thal. major</td>
<td>• 25% α⁺ trait</td>
<td>• 25% normal</td>
</tr>
<tr>
<td>β trait</td>
<td>• 25% Hb E trait/β trait</td>
<td>• 25% α⁺ trait/β trait</td>
<td>• 25% α⁺ trait/β trait</td>
<td>• 25% α⁺ trait/β trait</td>
</tr>
<tr>
<td></td>
<td>• 25% Hb E trait</td>
<td>• 25% α⁺ trait/β trait</td>
<td>• 25% α⁺ trait</td>
<td>• 25% normal</td>
</tr>
<tr>
<td></td>
<td>• 25% β trait</td>
<td>• 25% α⁺ trait/β trait</td>
<td>• 25% α⁺ trait</td>
<td>• 25% normal</td>
</tr>
<tr>
<td></td>
<td>• 25% normal</td>
<td>• 25% α⁺ trait/β trait</td>
<td>• 25% α⁺ trait</td>
<td>• 25% normal</td>
</tr>
</tbody>
</table>

Clinical significance of:
1. Hb E trait: asymptomatic
2. Hb E homozygote: asymptomatic
3. Hb E trait/α₀ trait: asymptomatic
4. α₀ trait: asymptomatic
5. Hb E trait/α⁺ trait: asymptomatic
6. α⁺ trait: asymptomatic
7. Hb E trait/β thalassaemia: moderate to severe anaemia
8. β trait: asymptomatic
9. α thalassaemia major: Hydrops foetalis
10. Hb H disease: moderate anaemia and usually not transfusion dependent
11. α⁺ homoyzgote: asymptomatic
12. α₀ trait/β trait: asymptomatic
13. α⁺ trait/β trait: asymptomatic
Prenatal Diagnosis

The standard diagnostic method is chorionic villi sampling and DNA analysis around 10 - 12 weeks of pregnancy. Amniocentesis is performed around 16 weeks of gestation and the results may not be available early enough to allow for broader termination of pregnancy options.

As an initial step, the patient's DNA will be analysed to look for mutations that caused the disease in the family. If both mutations (homozygotes or compound heterozygotes) can be detected, such mutations can be confirmed in the parents and among other potential carrier family members. Prenatal diagnosis can be offered to the couples whose mutations are known.

Linkage analysis instead of mutation analysis can be employed in families where only one or no mutation is detected.

a. Chorionic villi sampling (CVS):

CVS can be performed through the cervix (transcervical) or through the abdomen (transabdominal), depending on where the placenta is located. In both procedures, a small amount of placenta tissue is biopsied.

The transcervical procedure is performed by inserting a thin plastic tube through the vagina and cervix to reach the placenta under ultrasound guidance.

The transabdominal procedure is performed by inserting a needle through the abdomen and uterus and into the placenta under ultrasound guidance.

There is a small risk of miscarriage after the procedure (0.5 - 1%). In addition there is a small risk of infection or bleeding.

b. Amniocentesis

Amniocentesis is performed by inserting a needle through the abdominal wall into the uterus under ultrasound guidance and withdrawing a small amount of fluid from the sac surrounding the foetus.

There is a small risk of miscarriage after the procedure (0.5%). In addition there is a small risk of infection or leaking of amniotic fluid.
MALAYSIAN THALASSAEMIA ASSOCIATIONS

Thalassaemia Association of Malaysia
3rd Floor, National Cancer Society Building,
66, Jalan Raja Muda Abdul Aziz,
50300 KUALA LUMPUR.
Tel: 03 - 26941141
Email: malaysiathalassaemia@yahoo.com

Penang Thalassaemia Society
CO38-UP, Penang Caring Society Complex,
Jalan Utama,
10450 PULAU PINANG.
Tel: 04 - 2272133
Email: penthal@streamyx.com
http://www.penthal.org

Sarawak Thalassaemia Society
c/o B. Teo’s Clinic,
Jalan Tun Ahmad Zaidi Adruce,
93150 Kuching, SARAWAK.
Tel: 082 - 420008
Email: bibianateo@hotmail.com
http://www.thalassaemia.cdc.net.my

Sabah Thalassaemia Society
Persatuan Thalassaemia Sabah,
P.O Box 22748,
88787 Luyang,
Kota Kinabalu, SABAH.
Tel: 088 - 218766

Malacca Association of Thalassaemia
777B Jalan Kesidang 3/11,
Taman Kesidang, Bacang,
75200 MELAKA.

Perak Thalassaemia Society
190 Persiaran Bercham Selatan 26,
Taman Sri Kurau, Bercham,
31400 Ipoh, PERAK.
Tel: 05 - 5468476
Kelab Thalassaemia Kedah
No.93, Kampong Langgar,
06500 Alor Star, KEDAH.
Tel: 013-5993577

Johore Thalassaemia Society
Lot 5395 Jalan Kurniawati,
Kampung Kurnia,
80250 Johor Bahru, JOHOR.
Tel: 07 - 3320369

Kuantan Thalassaemia Society
c/o Mr. Wong Cheng Wah
48, 2nd Floor, Jalan Gambut,
25000 Kuantan, PAHANG.
Tel: 010 - 9877131

Thalassemia Society of University Hospital
Department of Paediatrics,
University Hospital, Lembah Pantai,
59100 KUALA LUMPUR.
Tel: 03 - 79502270
http://www.thasuh.org

Kelantan Thalassaemia Society
c/o Zulkifli & Co
Lot 1251 Tingkat 1, Bangunan Zul Isma,
Jalan Sultan Yahya Petra
Kubang Kerian
15200 Kota Bharu, KELANTAN.
Tel: 09-7646206

Thalassaemia Association of Malaysia
(Terengganu Branch)
c/o Pusat Rawatan Harian Kanak-Kanak
Hospital Sultanah Nur Zahirah
20400 Kuala Terengganu, TERENGGANU.
Tel: 09-6212064
COST OF CHELATING AGENTS

<table>
<thead>
<tr>
<th>Chelating agent</th>
<th>Unit Price</th>
<th>Drug cost for a 30 kg patient / month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deferasirox Exjade®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125 mg = RM 22.79</td>
<td>500 mg = RM 91.21</td>
<td>20 mg/kg/day x 30 kg ~ 500 mg/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For 28 days = RM 91.21 x 28 tab/500 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One month = RM 2553.88</td>
</tr>
<tr>
<td>Deferiprone (L1) Ferriprox®</td>
<td>500 mg = RM 3.32</td>
<td>75 mg/kg/day x 30 kg ~ 2.5 gm/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week = 35 tablets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 weeks = 140 tablet x RM 3.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= RM 464.80</td>
</tr>
<tr>
<td>Deferiprone (L1) Kelfer®</td>
<td>500 mg = RM 4.18</td>
<td>75 mg/kg/day x 30 kg ~ 2.5 gm/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week = 35 tablets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 weeks = 140 tablet x RM 4.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= RM 585.20</td>
</tr>
<tr>
<td>Desferrioxamine Desferal®</td>
<td>500 mg = RM 10.60</td>
<td>40 mg/kg/day x 30 kg ~ 1.5 gm/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week = 18 vials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 weeks = 72 vials x RM 10.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= RM 763.20</td>
</tr>
</tbody>
</table>

Note: The actual cost of using any particular drug would be higher since it may include the use of consumables, infusion pump and laboratory investigations for toxicity monitoring purposes.
APPENDIX 7

MID-PARENTAL HEIGHT MEASUREMENT

Family Measurements:

Measure height of parents for mid-parental height (MPH) and determine target height range

\[
\text{MPH for Boys} = \frac{\text{Father's height} + (\text{Mother's height} + 13) \text{ cm}}{2} \\
\text{MPH for Girls} = \frac{\text{Mother's height} + (\text{Father's height} - 13) \text{ cm}}{2}
\]

Target height range = MPH ± 2SD cm = MPH ± 8 cm

Example of calculation of MPH and target height range:

a) Patient is a girl. Mother's height: 154 cm Father's height: 172 cm.

\[
\text{MPH} = \frac{\text{Mother's height} + (\text{Father's height} - 13)}{2} \\
\text{MPH} = \frac{154 + (172 - 13)}{2} = 156.5 \text{ cm} \\
\text{Target height range} = \text{MPH ± 2SD} = 156.5 \text{ cm ± 8 cm} \\
= 148.5 \text{ to } 164.5 \text{ cm}
\]

b) Patient is a boy. Mother's height: 154 cm. Father's height: 172 cm.

\[
\text{MPH} = \frac{\text{Father's height} + (\text{Mother's height} + 13) \text{ cm}}{2} \\
\text{MPH} = \frac{172 + (154 + 13)}{2} = 169.5 \text{ cm} \\
\text{Target height range} = \text{MPH ± 2SD} = 169.5 \text{ cm ± 8 cm} \\
= 161.5 \text{ to } 177.5 \text{ cm}
\]
Plot the target height range on the growth chart at 18 years old point. Plot the patient’s current height on the growth chart and extrapolate the growth curve until 18 years old.

Please refer to attached growth chart:

★ If the boy’s height is 130 cm (point A), and extrapolated until 18 years old, his final height will be within the target height range. This is normal.

★ If the boy’s height is 122 cm (point B), and extrapolated until 18 years old, his final height will be at the lower limit of target height range. This is still normal but monitoring of subsequent growth is crucial.

★ If the boy’s height is 115 cm (point C), and extrapolated until 18 years old, his final height will be below target height range, this indicates short stature and further management is needed.
SCHEDULE OF INVESTIGATIONS FOR ENDOCRINE COMPLICATIONS IN TRANSFUSION DEPENDENT THALASSAEMIA

In general, the recommended age for screening for endocrine complications is 10 years old. However, the age for screening is individualized, i.e. depends on thalassaemia control and whether the patient has already developed an endocrine complication.

<table>
<thead>
<tr>
<th>Endocrine Complications</th>
<th>Investigations</th>
</tr>
</thead>
</table>
| Short Stature and Growth Failure | Detect other causes of short stature, including bone disorders and DFO toxicity. Endocrine tests that can be done:
 - Thyroid function tests
 - Sex hormones
 - OGTT
 Other possibly useful tests: IGF-1, IGFBP-3 and bone age assessment. GH stimulation tests may be required. |
| Delayed Puberty and Hypogonadism | Tanner staging should be determined every six months from the age of 10 years. Investigations in delayed puberty include:
 - Thyroid function tests
 - LH, FSH, oestradiol or testosterone
 - Bone age
 Pelvic ultrasound to assess ovarian and uterine size. If results are abnormal, perform gonadotropin releasing hormone (GnRH) stimulation test. |
| Hypothyroidism |
 - Free T4 and TSH
 - Bone age |
| Diabetes Mellitus | Fasting plasma glucose or OGTT |
| Osteoporosis/Osteopaenia |
 - Serum calcium, phosphate, ALP
 - 25-OH Vitamin D
 - Serum zinc
 - 24-hour urinary calcium
 - Spinal radiograph (AP and lateral views)
 - DEXA scan
 - MRI scan of the spine may be considered for patients with severe back pain. |
| Hypoparathyroidism |
 - Serum calcium
 - Serum phosphate
 - Serum magnesium
 - Serum alkaline phosphatase
 - Parathyroid hormone |
| Hypoadrenalism |
 - Baseline cortisol
 - ACTH stimulation test |
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>Alanine Transaminase</td>
</tr>
<tr>
<td>ANC</td>
<td>Absolute Neutrophil Count</td>
</tr>
<tr>
<td>AP</td>
<td>Anteroposterior</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate Aminotransferase</td>
</tr>
<tr>
<td>BMD</td>
<td>Bone Mineral Density</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BMT</td>
<td>Bone Marrow Transplantation</td>
</tr>
<tr>
<td>BUSEC</td>
<td>Blood Urea Serum Electrolyte Creatinine</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>DEXA</td>
<td>Dual-energy X-ray Absorptiometry</td>
</tr>
<tr>
<td>DFO</td>
<td>Desferrioxamine</td>
</tr>
<tr>
<td>DFP</td>
<td>Deferiprone</td>
</tr>
<tr>
<td>DFS</td>
<td>Disease Free Survival</td>
</tr>
<tr>
<td>DFX</td>
<td>Deferasirox</td>
</tr>
<tr>
<td>DIVC</td>
<td>Disseminated Intravascular Coagulation</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DW</td>
<td>Dry Weight</td>
</tr>
<tr>
<td>ESHG</td>
<td>European Society of Human Genetics</td>
</tr>
<tr>
<td>FBC</td>
<td>Full Blood Count</td>
</tr>
<tr>
<td>GHD</td>
<td>Growth Hormone Deficiency</td>
</tr>
<tr>
<td>GHIS</td>
<td>Growth Hormone Insensitivity</td>
</tr>
<tr>
<td>GVHD</td>
<td>Graft Versus Host Disease</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>HBsAg</td>
<td>Hepatitis B surface antigen</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis B Virus</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular Carcinoma</td>
</tr>
<tr>
<td>hCG</td>
<td>Human Chorionic Gonadotrophin</td>
</tr>
<tr>
<td>HCT</td>
<td>Haematocrit</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>HIB</td>
<td>Haemophilus Influenza B</td>
</tr>
<tr>
<td>HLA</td>
<td>Human Leucocyte Antigen</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HSCT</td>
<td>Haemopoietic Stem Cell Transplantation</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IGT</td>
<td>Impaired Glucose Tolerance</td>
</tr>
<tr>
<td>IM</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>I/v</td>
<td>Intravenous</td>
</tr>
<tr>
<td>LFT</td>
<td>Liver Function Test</td>
</tr>
<tr>
<td>LIC</td>
<td>Liver Iron Concentration</td>
</tr>
<tr>
<td>LVEF</td>
<td>Left Ventricular Ejection Fraction</td>
</tr>
<tr>
<td>MAC</td>
<td>Mid-arm Circumference</td>
</tr>
<tr>
<td>MCH</td>
<td>Mean Corpuscular Haemoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean Corpuscular Haemoglobin Concentration</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean Corpuscular Volume</td>
</tr>
<tr>
<td>MPH</td>
<td>Mid-parental Height</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>OGTT</td>
<td>Oral Glucose Tolerance Test</td>
</tr>
<tr>
<td>OPSI</td>
<td>Overwhelming Post-splenectomy Infection</td>
</tr>
<tr>
<td>OS</td>
<td>Overall survival</td>
</tr>
<tr>
<td>PBF</td>
<td>Peripheral Blood Film</td>
</tr>
<tr>
<td>PRBC</td>
<td>Packed Red Blood Cell</td>
</tr>
<tr>
<td>PT</td>
<td>Prothrombin</td>
</tr>
<tr>
<td>QALY</td>
<td>Quality Adjusted Life Year</td>
</tr>
<tr>
<td>QCT</td>
<td>Quantitative Computed Tomography</td>
</tr>
<tr>
<td>QUS</td>
<td>Quantitative Ultrasound</td>
</tr>
<tr>
<td>RBC</td>
<td>Red Blood Cell</td>
</tr>
<tr>
<td>RDA</td>
<td>Recommended Dietary Allowances</td>
</tr>
<tr>
<td>RDW</td>
<td>Red Cell Distribution Width</td>
</tr>
<tr>
<td>Rh-GH</td>
<td>Recombinant Human Growth Hormone</td>
</tr>
<tr>
<td>S/c</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SF</td>
<td>Serum Ferritin</td>
</tr>
<tr>
<td>SFT</td>
<td>Skin Fold Thickness</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide Dismutase</td>
</tr>
<tr>
<td>SVR</td>
<td>Sustained Viral Response</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyroid Stimulating Hormone</td>
</tr>
<tr>
<td>Wt</td>
<td>Weight</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The Development Group of these guidelines would like to express their gratitude and appreciation to the following for their contributions:

- Panel of external reviewers who reviewed the draft
- Dr. Tan Soek Siam for her advice regarding management of hepatitis B and hepatitis C in thalassaemia
- Dr. Sheamini Sivasampu for her advice on the CPG development process
- Mr. Mohd Said Morad and Mr. Sahaludin Sharif for their help in retrieving the articles and coordinating the development group meetings
- Technical Advisory Committee for Clinical Practice Guidelines for their valuable input and feedback

DISCLOSURE STATEMENT

The members of Development Group have completed disclosure forms. None hold shares in pharmaceutical firms or act as consultants to such firms. (Details are available upon request from the CPG Secretariat)

SOURCES OF FUNDING

The development of the CPG on Management of Transfusion Dependent Thalassaemia was supported financially in its entirety by the Ministry of Health Malaysia and was developed without any involvement of the pharmaceutical industry.
Levels of Evidence

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Evidence obtained from at least one properly designed randomized controlled trial</td>
</tr>
<tr>
<td>II-1</td>
<td>Evidence obtained from well-designed controlled trials without randomization</td>
</tr>
<tr>
<td>II-2</td>
<td>Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group</td>
</tr>
<tr>
<td>II-3</td>
<td>Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.</td>
</tr>
<tr>
<td>III</td>
<td>Opinions of respected authorities, based on clinical experience; descriptive studies and case reports; or reports of expert committees.</td>
</tr>
</tbody>
</table>

Source: US/Canadian Preventive Services Task Force

Grades of Recommendation

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>At least one meta analysis, systematic review, or RCT, or evidence rated as good and directly applicable to the target population</td>
</tr>
<tr>
<td>B</td>
<td>Evidence from well conducted clinical trials, directly applicable to the target population, and demonstrating overall consistency of results; or evidence extrapolated from meta analysis, systematic review, or RCT</td>
</tr>
<tr>
<td>C</td>
<td>Evidence from expert committee reports, or opinions and/or clinical experiences of respected authorities; indicates absence of directly applicable clinical studies of good quality</td>
</tr>
</tbody>
</table>

Source: Modified from the Scottish Intercollegiate Guidelines Network (SIGN)